Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (3): 905-909.DOI: 10.6023/cjoc202107039 Previous Articles Next Articles
NOTES
师静, 郭鹏飞, 李蔚*(), 孙海静, 孟令武, 仝新利*()
收稿日期:
2021-07-18
修回日期:
2021-09-15
发布日期:
2021-11-03
通讯作者:
李蔚, 仝新利
基金资助:
Jing Shi, Pengfei Guo, Wei Li(), Haijing Sun, Lingwu Meng, Xinli Tong()
Received:
2021-07-18
Revised:
2021-09-15
Published:
2021-11-03
Contact:
Wei Li, Xinli Tong
Supported by:
Share
Jing Shi, Pengfei Guo, Wei Li, Haijing Sun, Lingwu Meng, Xinli Tong. Copper(I)-Catalyzed Aerobic Oxidative Condensation of Biomass-Based Platform Compound Furfurals with Straight-Chain Alcohols[J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 905-909.
Entrya | Catalysis | Conv.b/% | Productb/% | ||
---|---|---|---|---|---|
3 | 4 | Others | |||
1 | CuCl+LiOH | 94 | 99.7 | — | — |
2 | CuCl2+LiOH | 61 | 74 | 26 | — |
3 | FeCl3+LiOH | 25 | 14 | 6 | 80 |
4 | MnCl2+LiOH | 11 | 92 | 8 | — |
5 | CuBr+LiOH | 94 | 96 | 4 | — |
6 | CuBr2+LiOH | 84 | 67 | 33 | — |
7 | CuI+LiOH | 95 | 87 | 13 | — |
8 | CrCl3+LiOH | 23 | 62 | 34 | 4 |
9 | LiOH | 76 | 36 | 64 | — |
10 | CuCl | 32 | — | — | 100 |
11 | None | 20 | — | — | 100 |
Entrya | Catalysis | Conv.b/% | Productb/% | ||
---|---|---|---|---|---|
3 | 4 | Others | |||
1 | CuCl+LiOH | 94 | 99.7 | — | — |
2 | CuCl2+LiOH | 61 | 74 | 26 | — |
3 | FeCl3+LiOH | 25 | 14 | 6 | 80 |
4 | MnCl2+LiOH | 11 | 92 | 8 | — |
5 | CuBr+LiOH | 94 | 96 | 4 | — |
6 | CuBr2+LiOH | 84 | 67 | 33 | — |
7 | CuI+LiOH | 95 | 87 | 13 | — |
8 | CrCl3+LiOH | 23 | 62 | 34 | 4 |
9 | LiOH | 76 | 36 | 64 | — |
10 | CuCl | 32 | — | — | 100 |
11 | None | 20 | — | — | 100 |
Entrya | Basic additive | Conversionb/% | Selectivity of 3b/% |
---|---|---|---|
1 | LiOH | 94 | 99.7 |
2 | NaOH | 95 | 90 |
3 | KOH | 65 | 62 |
4 | Ca(OH)2 | 0 | — |
5 | Na2CO3 | 8 | — |
6 | K2CO3 | 7 | — |
7 | CaCO3 | 23 | — |
8 | Li2CO3 | 15 | — |
Entrya | Basic additive | Conversionb/% | Selectivity of 3b/% |
---|---|---|---|
1 | LiOH | 94 | 99.7 |
2 | NaOH | 95 | 90 |
3 | KOH | 65 | 62 |
4 | Ca(OH)2 | 0 | — |
5 | Na2CO3 | 8 | — |
6 | K2CO3 | 7 | — |
7 | CaCO3 | 23 | — |
8 | Li2CO3 | 15 | — |
Entry a | Temp./℃ | Time/h | Conversionb/% | Selectivity of 3b/% |
---|---|---|---|---|
1 | 100 | 4 | 94 | 99.1 |
2 | 80 | 4 | 94 | 99.7 |
3 | 60 | 4 | 94 | 99 |
4 | 40 | 4 | 58 | 92 |
5 | 20 | 4 | 35 | 69 |
6 | 60 | 0.5 | 68 | 86 |
7 | 60 | 1 | 69 | >99.9 |
8 | 60 | 2 | 94 | >99.9 |
9 | 60 | 6 | 95 | 99 |
Entry a | Temp./℃ | Time/h | Conversionb/% | Selectivity of 3b/% |
---|---|---|---|---|
1 | 100 | 4 | 94 | 99.1 |
2 | 80 | 4 | 94 | 99.7 |
3 | 60 | 4 | 94 | 99 |
4 | 40 | 4 | 58 | 92 |
5 | 20 | 4 | 35 | 69 |
6 | 60 | 0.5 | 68 | 86 |
7 | 60 | 1 | 69 | >99.9 |
8 | 60 | 2 | 94 | >99.9 |
9 | 60 | 6 | 95 | 99 |
Entry | Catalytic systems | Reactants | Conversionb/% | Selectivity of 3b/% |
---|---|---|---|---|
1 | CuCl+LiOH | FUR+n-propanol | 94 | 99.7 |
2c | CuCl+LiOH | FUR+n-propanol | 68 | 55 |
3d | CuCl+LiOH | FUR+propanal | 89 | >99.9 |
4d | LiOH | FUR+propanal | 86 | >99.9 |
5d | CuCl | FUR+propanal | 50 | — |
Entry | Catalytic systems | Reactants | Conversionb/% | Selectivity of 3b/% |
---|---|---|---|---|
1 | CuCl+LiOH | FUR+n-propanol | 94 | 99.7 |
2c | CuCl+LiOH | FUR+n-propanol | 68 | 55 |
3d | CuCl+LiOH | FUR+propanal | 89 | >99.9 |
4d | LiOH | FUR+propanal | 86 | >99.9 |
5d | CuCl | FUR+propanal | 50 | — |
[1] |
Szuromi, P.; Jasny, B.; Clery, D.; Austin, J.; Hanson, B. Science 2007, 315, 781.
doi: 10.1126/science.315.5813.781 |
[2] |
Centi, G.; Van Santen, R. A. Catalysis for Renewables: From Feedstock to Energy Production, Wiley-VCH, Chichester, UK, 2007.
|
[3] |
Herbert, O. H. Modern Synthetic Reactions, Peking University Press, 1985. (in Chinese)
|
( Herbert, O. H. 现代合成反应, 北京大学出版社, 1985.)
|
|
[4] |
Peleteiro, S.; Rivas, S.; Alonso, J. L.; Santos, V.; Parajó, J. C. Bioresour. Technol. 2016, 202, 181.
doi: 10.1016/j.biortech.2015.12.017 |
[5] |
Dutta, S.; De, S.; Saha, B. Catal. Sci. Technol. 2012, 2, 2025.
doi: 10.1039/c2cy20235b |
[6] |
Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M. Energy Environ. Sci. 2016, 9, 1144.
doi: 10.1039/C5EE02666K |
[7] |
Guo, H.; Yin, G. J. Phys. Chem. C 2011, 115, 17516.
doi: 10.1021/jp2054712 |
[8] |
Li, J. Chem. Eng. J. 2001, 81, 338.
doi: 10.1016/S1385-8947(00)00182-0 |
[9] |
Sádaba, I.; Ojeda, M.; Mariscal, R. J; Fierro, L.; Granados, M. Appl. Catal., B 2011, 101, 638.
doi: 10.1016/j.apcatb.2010.11.005 |
[10] |
Kikhtyanin, O.; Bulanek, R.; Frolich, K. J. Mol. Catal. A: Chem. 2016, 424, 358.
doi: 10.1016/j.molcata.2016.09.014 |
[11] |
Desai, D. S.; Yadav, G. D. Ind. Eng. Chem. Res. 2019, 58, 16096.
doi: 10.1021/acs.iecr.9b01138 |
[12] |
Ning, L.; Liao, S.; Cui, H.; Tong, X. Petrochem. Technol. 2017, 46, 130. (in Chinese)
|
(宁良民, 廖圣云, 崔红格, 仝新利, 石油化工, 2017, 46, 130.)
|
|
[13] |
Tong, X.; Liu, Z.; Yu, L.; Li, Y. Chem. Commun. 2015, 51, 3674.
doi: 10.1039/C4CC09562F |
[14] |
Huo, N.; Ma, H.; Wang, X.; Wang, T.; Wang, G.; Wang, T.; Hou, L.; Gao, J.; Xu, J. Chin. J. Catal. 2017, 38, 1148. (in Chinese)
doi: 10.1016/S1872-2067(17)62841-9 |
(霍娜, 马红, 王新红, 王天龙, 王刚, 王婷, 候磊磊, 高进, 徐杰, 催化学报, 2017, 38, 1148.)
|
|
[15] |
Ning, L.; Liao, S.; Liu, X.; Yu, L.; Zhuang, X.; Tong, X. J. Catal. 2017, 352, 480.
doi: 10.1016/j.jcat.2017.06.017 |
[16] |
Thanh, D. N.; Kikhtyanin, O.; Ramos, R.; Kothari, M.; Ulbrich, P.; Munshi, T.; Kubička, D. Catal. Today 2016, 277, 97.
doi: 10.1016/j.cattod.2015.11.027 |
[17] |
Liu, Z.; Tong, X.; Liu, J.; Xue, S. Catal. Sci. Technol. 2016, 6, 1214.
doi: 10.1039/C5CY01195G |
[18] |
Ning, L.; Liao, S.; Cui, H.; Yu, L.; Tong, X. ACS Sustainable Chem. Eng. 2018, 6, 135.
doi: 10.1021/acssuschemeng.7b01929 |
[19] |
Tong, X.; Liu, Z.; Liao, S. Appl. Catal., A 2016, 510, 196.
doi: 10.1016/j.apcata.2015.11.025 |
[20] |
Yu, L.; Liao, S.; Ning, L.; Xue, S.; Liu, Z.; Tong, X. ACS Sustainable Chem. Eng. 2016, 4, 1894.
doi: 10.1021/acssuschemeng.6b00002 |
[21] |
Tong, X.; Zhang, Z.; Gao, Y.; Zhang, Y.; Yu, L.; Li, Y. Mol. Catal. 2019, 477, 110545.
|
[22] |
Ning, L.; Liao, S.; Liu, X.; Guo, P.; Zhang, Z.; Zhang, H.; Tong, X. J. Catal. 2018, 364, 1.
doi: 10.1016/j.jcat.2018.04.030 |
[23] |
Gao, Y.; Tong, X.; Zhang, H. Catal. Today 2020, 355, 238.
doi: 10.1016/j.cattod.2019.05.002 |
[24] |
Huang, H.; Yu, C.; Li, X.; Zhang, Y.; Zhang, Y.; Chen, X.; Mariano, P. S.; Xie, H.; Wang, W. Angew. Chem., Int. Ed. 2017, 56, 8201.
doi: 10.1002/anie.v56.28 |
[1] | Yanhua Gao, Yinpan Zhang, Yan Zhang, Tao Song, Yong Yang. Visible-Light-Induced Aerobic Oxidation of Alcohols over Surface Oxygen Vacancies-Enriched Nb2O5 [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2572-2579. |
[2] | Zeren Sun, Bingxin Zhai, Guangchao He, Hui Shen, Linya Chen, Shan Zhang, Yi Zou, Qihua Zhu, Yungen Xu. Synthesis and Anti-inflammatory Evaluation of Novel 1,2,3-Triazole Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2143-2155. |
[3] | Ni Wang, Zijun Zheng, Xiaoping Jia, Mengyuan Zhao, Yalei Wang, Chen Zhou, Zhijia Wang, Zelin Xiao, Hongmin Liu, Yu Ke. Study on Synthesis and Pharmacological Research of Jiyuan Oridonin A Derivatives as Potential Anti-tumor Drugs [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 646-659. |
[4] | Juan Tang, Jiayu Hu, Zhiqiang Zhu, Shouzhi Pu. Recent Advances in Visible-Light-Induced Organic Phosphine- Promoted Deoxygenative Functionalization Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4036-4056. |
[5] | Runhong Jia, Shuai Liu, Shichao Wang, Wenjuan Hao, Bo Jiang. A Solvent-Regulated Dediazotized Oxygenation of α-Aryl α-Diazoesters and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2814-2822. |
[6] | Kexin Li, Qingyuan Yang, Pengpeng Zhang, Wuyuan Zhang. Research Progress of Peroxygenase-Catalyzed Reactions Driven by in-situ Generation of H2O2 [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 732-741. |
[7] | Fufang Wu, Xuejian Li, Hao Jia, Xuanzhen Han, Xiaobao Shen. Iodine(III)-Promoted Oxidative Cross-Coupling Reactions of C—H Bonds via a Free Radical Process [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 884-890. |
[8] | Xiaowei Zhao, Ziqin Xia, Man Zhang, Nengneng Zhou. Radical-Mediated Tandem Cyclization to Construct Seven-Membered Nitrogen/Oxygen Heterocycles [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3995-4023. |
[9] | Hong'en Cao, Peizi Li, Xiaobi Jing, Hongwei Zhou. Selective Epoxidation of β-Ionone Catalyzed by Iron-Doped Se/C [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3890-3895. |
[10] | Yuliang Qian, Lan Xu, Yihan Tong, Tianyi Liu, Yingying Xia, Dingmao Hu, Liangce Rong. Synthesis of 2-Substituted Cyclopenta[c]chromene Derivatives by α-C Insertion of Acetonitrile (Acetone) [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 181-189. |
[11] | Xi Zhao, Yingcong Ou, Yan Liu, Keiji Maruoka, Qian Chen. Recent Progress in the Construction of S—S, P—S and C—S Bonds Involving O2-Initiated Sulfur-Centered Radicals [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3366-3378. |
[12] | Xingyue Wang, Changlin Xu, Hongyu Guan, Mi Lin, Peng Huang. Deoxygenation of Sulfoxides with Dimethylthiocarbamoyl Chloride in the Absence of Additional Solvent [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3330-3334. |
[13] | Minshou Wang, Hongbin Zhang. Synthesis of Framework Structure of Guaiane [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1739-1743. |
[14] | Shihu Qian, Yuanzheng Huang, Jiaming Li, Yanchun Zhang, Bin Zhang, Fan Jin. Synthesis and Anti-proliferative Activity of Indole-2-amide Derivatives as Cyclooxygenase-2/5-lipoxygenase (COX-2/5-LOX) Dual Inhibitors [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1631-1638. |
[15] | Weihui Zhuang, Xiaofeng Zhang, Qiufeng Huang. Recent Advances in Cross-Dehydrogenative-Coupling Reactions Using Molecular Oxygen as the Sole Oxidant [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 529-542. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||