Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (2): 679-685.DOI: 10.6023/cjoc202203031 Previous Articles Next Articles
Special Issue: 有机氟化学虚拟合辑
Yasir Mumtaza,†, 刘杰a,*,†(), 黄鑫b
收稿日期:
2022-07-03
修回日期:
2022-08-30
发布日期:
2022-10-24
作者简介:
基金资助:
Yasir Mumtaza,†, Jie Liua,†(), Xin Huangb
Received:
2022-07-03
Revised:
2022-08-30
Published:
2022-10-24
Contact:
*E-mail: About author:
Supported by:
Share
Yasir Mumtaz, Jie Liu, Xin Huang. Copper-Promoted Trifluoromethylthiolation of Anilines with CF3SO2Na[J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 679-685.
Entry | [P] | Cu salt | Solvent | Temp./℃ | Yield/%b |
---|---|---|---|---|---|
1 | PPh3 | CuI | MeCN | 50 | 23 |
2 | PMe3 | CuI | MeCN | 50 | 10 |
3 | PPh2Me | CuI | MeCN | 50 | 0 |
4 | PCy3 | CuI | MeCN | 50 | 0 |
5 | PPh2Cl | CuI | MeCN | 50 | 38 |
6 | PPh2Cl | CuBr | MeCN | 50 | 30 |
7 | PPh2Cl | Cu(MeCN)4PF6 | MeCN | 50 | 35 |
8 | PPh2Cl | CuSCN | MeCN | 50 | 30 |
9 | PPh2Cl | CuCl2 | MeCN | 50 | 45 |
10 | PPh2Cl | CuSO4 | MeCN | 50 | 60 |
11 | PPh2Cl | CuSO4 | DCM | 50 | 32 |
12 | PPh2Cl | CuSO4 | THF | 50 | 20 |
13 | PPh2Cl | CuSO4 | DCE | 50 | 36 |
14 | PPh2Cl | CuSO4 | DMSO | 50 | 15 |
15 | PPh2Cl | CuSO4 | MeCN | 25 | 5 |
16 | PPh2Cl | CuSO4 | MeCN | 60 | 68 |
17 | PPh2Cl | CuSO4 | MeCN | 70 | 80 (75c) |
18 | PPh2Cl | CuSO4 | MeCN | 80 | 78 |
19 | PPh2Cl | CuSO4 (10 mol%) | MeCN | 70 | 43 |
20 | PPh2Cl | CuSO4 (5 mol%) | MeCN | 70 | 16 |
21 | PPh2Cl | - | MeCN | 70 | 0 |
22 | PPh2Cl | CuSO4 | MeCN | 70 | 43% d |
Entry | [P] | Cu salt | Solvent | Temp./℃ | Yield/%b |
---|---|---|---|---|---|
1 | PPh3 | CuI | MeCN | 50 | 23 |
2 | PMe3 | CuI | MeCN | 50 | 10 |
3 | PPh2Me | CuI | MeCN | 50 | 0 |
4 | PCy3 | CuI | MeCN | 50 | 0 |
5 | PPh2Cl | CuI | MeCN | 50 | 38 |
6 | PPh2Cl | CuBr | MeCN | 50 | 30 |
7 | PPh2Cl | Cu(MeCN)4PF6 | MeCN | 50 | 35 |
8 | PPh2Cl | CuSCN | MeCN | 50 | 30 |
9 | PPh2Cl | CuCl2 | MeCN | 50 | 45 |
10 | PPh2Cl | CuSO4 | MeCN | 50 | 60 |
11 | PPh2Cl | CuSO4 | DCM | 50 | 32 |
12 | PPh2Cl | CuSO4 | THF | 50 | 20 |
13 | PPh2Cl | CuSO4 | DCE | 50 | 36 |
14 | PPh2Cl | CuSO4 | DMSO | 50 | 15 |
15 | PPh2Cl | CuSO4 | MeCN | 25 | 5 |
16 | PPh2Cl | CuSO4 | MeCN | 60 | 68 |
17 | PPh2Cl | CuSO4 | MeCN | 70 | 80 (75c) |
18 | PPh2Cl | CuSO4 | MeCN | 80 | 78 |
19 | PPh2Cl | CuSO4 (10 mol%) | MeCN | 70 | 43 |
20 | PPh2Cl | CuSO4 (5 mol%) | MeCN | 70 | 16 |
21 | PPh2Cl | - | MeCN | 70 | 0 |
22 | PPh2Cl | CuSO4 | MeCN | 70 | 43% d |
[1] |
(f) Nguyen, T.; Chiu, W. L.; Wang, X. Y.; Sattler, M. O.; Love, J. A. Org. Lett. 2016, 18, 5492.
pmid: 27736068 |
(g) Nikolaienko, P.; Yildiz, T.; Rueping, M. Eur. J. Org. Chem. 2016, 2016, 1091.
doi: 10.1002/ejoc.201501623 pmid: 27736068 |
|
[2] |
Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
doi: 10.1021/cr040075b |
[3] |
(a) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
doi: 10.1039/C4CS00239C |
(b) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
doi: 10.1021/cr040075b |
|
(c) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
doi: 10.1002/anie.201206566 |
|
(d) Tlili, A.; Billard, T. Angew. Chem., Int. Ed. 2013, 52, 6818.
doi: 10.1002/anie.201301438 |
|
(e) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2014, 2415.
doi: 10.1002/ejoc.201301857 |
|
(f) Hu, J. J.; Huang, Y. G.; Xu, X. H.; Qing, F. L. Chin. J. Org. Chem. 2019, 39, 177. (in Chinese)
doi: 10.6023/cjoc201808041 |
|
(胡娟娟, 黄焰根, 徐修华, 卿凤翎, 有机化学, 2019, 39, 177.)
doi: 10.6023/cjoc201808041 |
|
(h) Wang, J. Y.; Ma, L.; Li, Y.; W, X. S. Chin. J. Org. Chem. 2019, 39, 232. (in Chinese)
|
|
(王建勇, 马岚, 李彦, 王细胜, 有机化学, 2019, 39, 232.)
doi: 10.6023/cjoc201807052 |
|
[4] |
Curtis-Prior, P. B.; Prouteau, M. Int. J. Obes. 1983, 7, 575.
|
[5] |
Iglesias, R.; Paramá, A.; Alvarez, M. F.; Leiro, J.; Sanmartín, M. L. Dis. Aquat. Org. 2002, 49, 191.
doi: 10.3354/dao049191 |
[6] |
Noe, F. F.; Fowden, J. Biochemistry 1966, 77, 543.
|
[7] |
(a) Nodiff, E. A.; Lipschutz, S.; Craig, P. N.; Gordon, M. J. Org. Chem. 1960, 25, 60.
doi: 10.1021/jo01071a018 |
(b) Kremsner, J. M.; Rack, M.; Pilger, C.; Kappe, C. O. Tetrahedron Lett. 2009, 50, 3665.
doi: 10.1016/j.tetlet.2009.03.103 |
|
[1] |
(a) Xu, X. H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
doi: 10.1021/cr500193b pmid: 27736068 |
(b) Chu, L.; Qing, F. L. Acc. Chem. Res. 2014, 47, 1513.
doi: 10.1021/ar4003202 pmid: 27736068 |
|
(c) Remy, D. C.; Britcher, S. F.; King, S. W.; Anderson, P. S.; Hunt, C. A.; Randall, W. C.; Bélanger, P.; Atkinson, J. G.; Girard, Y.; Rooney, C. S.; Fuentes, J. J.; Totaro, J. A.; Robinson, J. L.; Risley, E. A.; Williams, M. J. Med. Chem. 1983, 26, 974.
pmid: 27736068 |
|
(d) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 6, 140.
pmid: 27736068 |
|
(e) Boiko, V. N. Beilstein J. Org. Chem. 2010, 18, 880.
pmid: 27736068 |
|
[8] |
(a) Wakselman, C.; Tordeux, M. J. Org. Chem. 1985, 50, 4047.
doi: 10.1021/jo00221a017 |
(b) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem., Int. Ed. 2007, 46, 754.
|
|
(c) Harsanyi, A.; Dorko, E.; Csapo, A.; Bako, T.; Peltz, C.; Rabai, J. J. Fluorine Chem. 2011, 132, 1241.
doi: 10.1016/j.jfluchem.2011.07.008 |
|
(d) Ma, J. J.; Yi, W. B.; Lu, G. P.; Cai, C. Catal. Sci. Technol. 2016, 6, 417.
doi: 10.1039/C5CY01561H |
|
(e) Ma, J. J.; Liu, Q. R.; Lu, G. P.; Yi, W. B. J. Fluorine Chem. 2017, 193, 113.
doi: 10.1016/j.jfluchem.2016.11.010 |
|
[9] |
(a) Billard, T.; Large, S.; Langlois, B. R. Tetrahedron Lett. 1997, 38, 65.
doi: 10.1016/S0040-4039(96)02216-2 pmid: 26332514 |
(b) Potash, S.; Rozen, S. J. Fluorine Chem. 2014, 168, 173.
doi: 10.1016/j.jfluchem.2014.09.026 pmid: 26332514 |
|
(c) Jouvin, K.; Matheis, C.; Goossen, L. J. Chem.-Eur. J. 2015, 21, 14324.
doi: 10.1002/chem.201502914 pmid: 26332514 |
|
(d) Exner, B.; Bayarmagnai, B.; Jia, F.; Goossen, L. J. Chem.-Eur. J. 2015, 21, 17220.
doi: 10.1002/chem.201503915 pmid: 26332514 |
|
(e) Bayarmagnai, B.; Matheis, C.; Jouvin, K.; Goossen, L. J. Angew. Chem., Int. Ed. 2015, 54, 5753.
doi: 10.1002/anie.201500899 pmid: 26332514 |
|
[10] |
(a) Wakselman, C.; Tordeux, M.; Clavel, J. L.; Langlois, B. J. Chem. Soc.,Chem. Commun. 1991, 15, 993.
pmid: 16626142 |
(b) Quiclet-Sire, B.; Saicic, R. N.; Zard, S. Z. Tetrahedron Lett. 1996, 37, 9057.
doi: 10.1016/S0040-4039(96)02127-2 pmid: 16626142 |
|
(c) Pooput, C.; Medebielle, M.; Dolbier, W. R. Org. Lett. 2004, 6, 301.
pmid: 16626142 |
|
(d) Pooput, C.; Dolbier, W. R.; Medebielle, M. J. Org. Chem. 2006, 71, 3564.
pmid: 16626142 |
|
[11] |
(a) Munavalli, S.; Rohrbaugh, D. K.; Rossman, D. I.; Berg, F. J.; Wagner, G. W.; Durst, H. D. Synth. Commun. 2000, 30, 2847.
doi: 10.1080/00397910008087435 |
(b) Ferry, A.; Billard, T.; Langlois, B. R.; Bacque, E. J. Org. Chem. 2008, 73, 9362.
doi: 10.1021/jo8018544 |
|
(c) Yang, X.; Zheng, K.; Zhang, C. Org. Lett. 2020, 22, 2026.
doi: 10.1021/acs.orglett.0c00405 |
|
(d) Xu, C.; Ma, B.; Shen, Q. Angew. Chem., Int. Ed. 2014, 53, 9316.
doi: 10.1002/anie.201403983 |
|
(e) Zhang, P.; Li, M.; Xue, X.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem. 2016, 81, 7486.
doi: 10.1021/acs.joc.6b01178 |
|
(f) Yang, Y.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782.
doi: 10.1021/ja402455f |
|
[12] |
(a) Zhang, C.; Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 183.
doi: 10.1021/ja210364r |
(b) Zhang, C.; Brennessel, W. W.; Vicic, D. A. J. Fluorine Chem. 2012, 140, 112.
doi: 10.1016/j.jfluchem.2012.05.003 |
|
(c) Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K. W. Angew. Chem., Int. Ed. 2013, 52, 1548.
doi: 10.1002/anie.201208432 |
|
(d) Zhong, W.; Liu, X. Tetrahedron Lett. 2014, 55, 4909.
doi: 10.1016/j.tetlet.2014.07.039 |
|
(e) Kalvet, I.; Guo, Q.; Tizzard, G. J.; Schönebeck, F. ACS Catal. 2017, 7, 2126.
doi: 10.1021/acscatal.6b03344 |
|
[13] |
(a) Chen, C.; Chu, L.; Qing, F. J. Am. Chem. Soc. 2012, 134, 12454.
doi: 10.1021/ja305801m |
(b) Zhang, C. P.; Vicic, D. A. Chem. Asian J. 2012, 7, 1756.
doi: 10.1002/asia.201200347 |
|
(c) Kang, K.; Xu, C.; Shen, Q. Org. Chem. Front. 2014, 1, 294.
doi: 10.1039/c3qo00068k |
|
(d) Zhao, M.; Zhao, X.; Zheng, P.; Tian, Y. J. Fluorine Chem. 2017, 194, 73.
doi: 10.1016/j.jfluchem.2017.01.007 |
|
[14] |
(a) Baert, F.; Colomb, J.; Billard, T. Angew. Chem., Int. Ed. 2012, 51, 10382.
doi: 10.1002/anie.201205156 |
(b) Glenadel, Q.; Alazet, S.; Billard, T. J. Fluorine Chem. 2015, 179, 89.
doi: 10.1016/j.jfluchem.2015.06.007 |
|
[15] |
(a) Wu, J.; Gu, Y.; Leng, X.; Shen, Q. Angew. Chem., Int. Ed. 2015, 54, 7648.
doi: 10.1002/anie.201502113 |
(b) Matheis, C.; Bayarmagnai, B.; Jouvin, K.; Goossen, L. J. Org. Chem. Front. 2016, 3, 949.
doi: 10.1039/C6QO00194G |
|
(c) Ghiazza, C.; Monnereau, C.; Khrouz, L.; Billard, T.; Tlili, A. Synthesis 2019, 51, 2865.
doi: 10.1055/s-0037-1610322 |
|
[16] |
Adams, D. J.; Goddard, A.; Clark, J. H.; Macquarrie, D. J. Chem. Commun. 2000, 11, 987.
|
[17] |
Danoun, G.; Bayarmagnai, B.; Gruenberg, M. F.; Goossen, L. J. Chem. Sci. 2014, 5, 1312.
doi: 10.1039/c3sc53076k |
[18] |
Bayarmagnai, B.; Matheis, C.; Risto, E.; Goossen, L. J. Adv. Synth. Catal. 2014, 356, 2343.
doi: 10.1002/adsc.201400340 |
[19] |
Matheis, C.; Wagner, V.; Goossen, L. J. Chem. - Eur. J. 2016, 22, 79.
doi: 10.1002/chem.201503524 |
[20] |
Bertoli, G.; Exner, B.; Evers, M. V.; Tschulik, K.; Goossen, L. J. Fluorine Chem. 2018, 210, 132.
doi: 10.1016/j.jfluchem.2018.03.011 |
[21] |
Koziakov, D.; Majek, M.; Jacobi von Wangelin, A. Eur. J. Org. Chem. 2017, 2017, 6722.
doi: 10.1002/ejoc.201701339 |
[22] |
Zheng, C.; Liu, Y.; Hong, J.; Huang, S.; Zhang, W.; Yang, Y.; Fang, G. Tetrahedron Lett. 2019, 60, 1404.
doi: 10.1016/j.tetlet.2019.04.018 |
[23] |
(a) Yang, Y.; Xu, L.; Yu, S. Q.; Liu, X. Q.; Zhang, Y.; Vicic, D. A. Chem.-Eur. J. 2016, 22, 858.
doi: 10.1002/chem.201504790 pmid: 26634641 |
(b) Liang, S. S.; Wei, J. J.; Jiang, L. Q.; Liu, J.; Mumtaz, Y.; Yi, W. B. CCS Chem. 2021, 3, 265.
doi: 10.31635/ccschem.020.202000577 pmid: 26634641 |
|
(c) He, X. L.; Majumder, S.; Wu, J.; Jin, C. D.; Guo, S. R.; Guo, Z. P.; Yang, M. H. Org. Chem. Front. 2019, 6, 2435.
doi: 10.1039/C9QO00350A pmid: 26634641 |
|
(d) Reddy, R. J.; Kumari, A. H. RSC Adv. 2021, 11, 9130.
doi: 10.1039/D0RA09759D pmid: 26634641 |
|
[24] |
Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Angew. Chem., Int. Ed. 2015, 127, 15178.
doi: 10.1002/ange.201508495 |
[25] |
Liu, J.; Zhao, X.; Jiang, L. Yi, W. Adv. Synth. Catal. 2018, 360, 4012.
doi: 10.1002/adsc.201800702 |
[26] |
Zhang, K.; Xu, X. H.; Qing, F. L. J. Org. Chem. 2015, 80, 7658.
doi: 10.1021/acs.joc.5b01295 pmid: 26172583 |
[27] |
(a) Kurose, R.; Nishii, Y. J.; Miura, M. Org. Lett. 2021, 23, 2380.
doi: 10.1021/acs.orglett.1c00727 pmid: 33703908 |
(b) Shen, F.; Zheng, H. L.; Xue, X. S.; Lu, L.; Shen Q. L. Org. Lett. 2019, 21, 6347.
doi: 10.1021/acs.orglett.9b02236 pmid: 33703908 |
|
(c) Yue, H. F.; Zhu, C.; Shen, L.; Geng, Q. Y.; Hock, K. J.; Yuan, T. T.; Cavallo, L.; Rueping, M. Chem. Sci. 2019, 10, 4430.
doi: 10.1039/C9SC00783K pmid: 33703908 |
|
(d) Bruening, F.; Pitts, C. R.; Kalim, J.; Bornemann, D.; Ghiazza, C.; de Montmollin, J.; Trapp, N.; Billard, T.; Togni, A. Angew. Chem., Int. Ed. 2019, 58, 18937.
doi: 10.1002/anie.201910594 pmid: 33703908 |
|
(e) Bonazaba Milandou, L. J. C.; Carreyre, H.; Alazet, S.; Greco, G.; Martin-Mingot, A.; Nkounkou Loumpangou, C.; Ouamba, J.; Bouazza, F.; Billard, T.; Thibaudeau, S. Angew. Chem., Int. Ed. 2017, 56, 169.
pmid: 33703908 |
|
[28] |
Liang, S. S.; Wei, J. J.; Jiang, L. Q.; Liu, J.; Mumtaz, Y.; Yi, W. B. Chem. Commun. 2019, 55, 8536.
doi: 10.1039/C9CC03282G |
[29] |
Saritha, R.; Annes, S. B.; Ramesh, S. RSC Adv. 2021, 11, 14079.
doi: 10.1039/D1RA02372A |
[30] |
Zhu, X. X.; Wang, H. Q.; Li, C. G.; Xu, X. L.; Xu, J.; Dai, J. J.; Xu H. J. J. Org. Chem. 2021, 86, 16114.
doi: 10.1021/acs.joc.0c02659 |
[1] | Yun Shi, Ting Xiao, Dong Xia, Wenchao Yang. SCF3 Radical Initiated Cascade Reaction of Unsaturated Hydrocarbon [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2715-2727. |
[2] | Keli Wang, Jing Huang, Wei Liu, Zhilin Wu, Xianyong Yu, Jun Jiang, Weimin He. Direct Synthesis of 3-Sulfonylquinolines from N-Propargylanilines with Sulfonyl Chlorides [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2527-2534. |
[3] | Meng Li, Kai Sun. Silver-Mediated Trifluoromethylthiolation-Cyclization-Hydrolysis: Access to F3CS-Containing Quinolinones [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2089-2097. |
[4] | Bing Liu, Zhichuang Wang, Kai Sun, Shi Tang, Xin Wang. Silver-Mediated Radical Trifluoromethylthiolation Cyclization: Synthesis of CF3S-Containing Benzimidazole[2,1-a]isoquinolines [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1387-1395. |
[5] | Xiaolong Fang, Bin Li, Jie Jin, Ning Duan. Homogeneous Catalytic Hydrogenation of Dimethyl Malonate into 1,3-Propanediol [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1407-1413. |
[6] | Xiaolong Guo, Yuxian Wang, Zhiqiang Zhao, Qing Wang, Jian Zuo, Luyao Wang. Electrochemical Oxidative C—H Trifluoromethylation of Quinoxalin-2(1H)-ones and the Performance Evaluation via Electro-descriptors [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 641-649. |
[7] | Wenyi Li, Yinheng Tang, Wentao Ouyang, Yuhan Lu, Jinyang Chen, Weimin He. Electrochemical Selenylation of N-Unprotected Anilines for Consturcing 4-(Organylselanyl)anilines [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4766-4772. |
[8] | Hehua Xu, Xiangtai Meng, Yu Zheng, Jinyue Luo, Shenlin Huang. Electrochemical Annulations of o-Alkynylanilines for Synthesis of 3-Iodoindoles [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4696-4703. |
[9] | Minghui Tong, Xinyu Zhang, Yeming Wang, Zikun Wang. Advances in Reactions of Iodonium Ylides [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 126-143. |
[10] | Chen Ying, Jing Xiaobi, Yu Lei. Polyaniline-Supported Copper-Catalyzed Buchwald-Hartwig Couplings of Pyrimidin-2-amines [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2570-2574. |
[11] | Du Xingpeng, Zhang Xi, Hou Fei, Liu Xiaojun, Wang Xicun, Quan Zhengjun. Iodine-Mediated Synthesis of 2-Acylquinoline from Acetophenone and 2-(Arylvinyl)aniline [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1337-1344. |
[12] | Lang Bo, Suleman Muhammad, Lu Ping, Wang Yanguang. Copper(I)-Promoted Trifluoromethylthiolation of 3-Diazoindolin-2-imines with AgSCF3: Synthesis of 3-((Trifluoromethyl)thio)-2-aminoindoles [J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3300-3306. |
[13] | Zhang Xiaopeng, Zhu Yanjie, Zhu Yisong, Li Zhengwei, Zhang Guisheng. Advances in Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones [J]. Chin. J. Org. Chem., 2019, 39(9): 2392-2402. |
[14] | Wang Zhen, Zhang Ling, Zhang Fugeng, Wang Bin. Synthesis of β-Carbolines through Tetra-n-butylammonium Bromide-Mediated Cycloaromatization Reaction of N-Methylaniline with Tryptophan Derivatives [J]. Chin. J. Org. Chem., 2019, 39(8): 2323-2327. |
[15] | Fang Xiaolong, Duan Ning, Zhang Min, Zhang Chunyan, Liu Rui, Zhu Hongping. Homogeneous Catalytic Hydrogenation of Dimethyl Malonate into Methyl 3-Hydroxypropanoate [J]. Chin. J. Org. Chem., 2019, 39(5): 1450-1455. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||