Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (6): 2110-2119.DOI: 10.6023/cjoc202208010 Previous Articles Next Articles
Special Issue: 有机氟化学虚拟合辑
陆晓雨*(), 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅
收稿日期:
2022-08-08
修回日期:
2022-11-01
发布日期:
2023-01-11
基金资助:
Xiaoyu Lu*(), Xiaomei Sun, Yaqing Niu, Junchao Wang, Wenjing Yin, Mengting Gao, Zi Liu, Zhenghuan Wei, Tinghua Tao
Received:
2022-08-08
Revised:
2022-11-01
Published:
2023-01-11
Contact:
E-mail: Supported by:
Share
Xiaoyu Lu, Xiaomei Sun, Yaqing Niu, Junchao Wang, Wenjing Yin, Mengting Gao, Zi Liu, Zhenghuan Wei, Tinghua Tao. Copper-Catalyzed Decarboxylative Cross-Coupling of α‑Fluoroacrylic Acids with N-Tosyl Oxaziridines[J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2110-2119.
Entrya | Catalyst | Ligand | Solvent | Yield/% (Z:E>30:1) |
---|---|---|---|---|
1 | CuI | L1 | DCE | 37 |
2 | CuBr | L1 | DCE | 26 |
3 | CuCl | L1 | DCE | 25 |
4 | CuTc | L1 | DCE | 55 |
5 | Cu2O | L1 | DCE | 62 |
6 | CuOTf.Ph | L1 | DCE | 40 |
7 | Cu(CH3CN)4PF6 | L1 | DCE | 78 |
8 | Fe(OAc)2 | L1 | DCE | 35 |
9 | Cu(OTf)2 | L1 | DCE | 42 |
10 | Cu(acac)2 | L1 | DCE | 72 |
11 | CuO | L1 | DCE | 28 |
12 | CuBr2 | L1 | DCE | 29 |
13 | Cu(OAc)2 | L1 | DCE | 31 |
14 | Cu(CH3CN)4PF6 | L2 | DCE | 37 |
15 | Cu(CH3CN)4PF6 | L3 | DCE | 22 |
16 | Cu(CH3CN)4PF6 | L4 | DCE | 18 |
17 | Cu(CH3CN)4PF6 | L1 | PhF | 45 |
18 | Cu(CH3CN)4PF6 | L1 | PhCl | 56 |
19 | Cu(CH3CN)4PF6 | L1 | PhH | 43 |
20 | Cu(CH3CN)4PF6 | L1 | PhH/DCE (V:V=1:1) | 38 |
21 | Cu(CH3CN)4PF6 | L1 | DCE | 69 |
22 | Cu(CH3CN)4PF6 | L1 | DCE | 65 |
23 | — | L1 | DCE | Trace |
Entrya | Catalyst | Ligand | Solvent | Yield/% (Z:E>30:1) |
---|---|---|---|---|
1 | CuI | L1 | DCE | 37 |
2 | CuBr | L1 | DCE | 26 |
3 | CuCl | L1 | DCE | 25 |
4 | CuTc | L1 | DCE | 55 |
5 | Cu2O | L1 | DCE | 62 |
6 | CuOTf.Ph | L1 | DCE | 40 |
7 | Cu(CH3CN)4PF6 | L1 | DCE | 78 |
8 | Fe(OAc)2 | L1 | DCE | 35 |
9 | Cu(OTf)2 | L1 | DCE | 42 |
10 | Cu(acac)2 | L1 | DCE | 72 |
11 | CuO | L1 | DCE | 28 |
12 | CuBr2 | L1 | DCE | 29 |
13 | Cu(OAc)2 | L1 | DCE | 31 |
14 | Cu(CH3CN)4PF6 | L2 | DCE | 37 |
15 | Cu(CH3CN)4PF6 | L3 | DCE | 22 |
16 | Cu(CH3CN)4PF6 | L4 | DCE | 18 |
17 | Cu(CH3CN)4PF6 | L1 | PhF | 45 |
18 | Cu(CH3CN)4PF6 | L1 | PhCl | 56 |
19 | Cu(CH3CN)4PF6 | L1 | PhH | 43 |
20 | Cu(CH3CN)4PF6 | L1 | PhH/DCE (V:V=1:1) | 38 |
21 | Cu(CH3CN)4PF6 | L1 | DCE | 69 |
22 | Cu(CH3CN)4PF6 | L1 | DCE | 65 |
23 | — | L1 | DCE | Trace |
[1] |
(a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
doi: 10.1021/jm800219f |
(b) Wang, J.; SánchezRoselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
doi: 10.1021/cr4002879 |
|
(c) Liu, Q.; Ni, C.; Hu, J. Natl. Sci. Rev. 2017, 4, 303.
doi: 10.1093/nsr/nwx058 |
|
(d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C |
|
(d) Liao, F.; Yu, J; Zhou, J. Chin. J. Org. Chem. 2017, 37, 2175. (in Chinese)
doi: 10.6023/cjoc201705001 |
|
(廖富民, 余金生, 周剑, 有机化学, 2017, 37, 2175.)
doi: 10.6023/cjoc201705001 |
|
(e) He, S.; Pi, J.; Li, Y.; Lu, X.; Fu, Y. Acta Chim. Sinica. 2018, 76, 956. (in Chinese)
doi: 10.6023/A18080333 |
|
(何世江, 皮静静, 李炎, 陆熹, 傅尧, 化学学报, 2018, 76, 956.)
doi: 10.6023/A18080333 |
|
[2] |
(a) O’Hagan, D.; Deng, H. Chem. Rev. 2015, 115, 634.
doi: 10.1021/cr500209t |
(b) Shi, Y.; Xiao, T.; Xia, D.; Yang, W. Chin. J. Org. Chem. 2022, 42, 2715. (in Chinese)
doi: 10.6023/cjoc202203041 |
|
(石云, 肖婷, 夏冬, 杨文超, 有机化学, 2022, 42, 2715.)
doi: 10.6023/cjoc202203041 |
|
(c) Chen, D.; Jiang, J.; Wan, J.-P. Chin. J. Chem. 2022, 40, 2582.
doi: 10.1002/cjoc.v40.21 |
|
[3] |
(a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis Reactivity Applications, Wiley-VCH, Weinheim, Germany, 2007.
|
(b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
doi: 10.1126/science.1131943 |
|
(c) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
doi: 10.1002/anie.v52.32 |
|
[4] |
(a) Lin, G.-Q.; You, Q.-D.; Cheng, J.-F. Chiral Drugs: Chemistry and Biological Action, John Wiley & Sons, Inc., Hoboken, 2011.
|
(b) Oishi, S.; Kamitani, H.; Kodera, Y.; Watanabe, K.; Kobayashi, K.; Narumi, T.; Tomita, K.; Ohno, H.; Naito, T.; Kodama, E.; Matsuoka, M.; Fujii, N. Org. Biomol. Chem. 2009, 7, 2872.
doi: 10.1039/b907983a |
|
(c) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
doi: 10.1021/acs.jmedchem.7b01788 |
|
[5] |
(a) Reddy, V. P. Organofluorine Compounds in Biology and Medicine, Elsevier, Amsterdam, 2015.
|
(b) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, WileyVCH, Weinheim, 2013.
|
|
(c) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J. Chem. Soc. Rev. 2011, 40, 3496
doi: 10.1039/c0cs00221f |
|
[6] |
(a) Drouin, M.; Paquin, J.-F. Beilstein. J. Org. Chem. 2017, 13, 2637.
doi: 10.3762/bjoc.13.262 pmid: 21399789 |
(b) Landelle, G.; Bergeron, M.; Turcotte-Savard, M.-O.; Paquin, J.-F. Chem. Soc. Rev. 2011, 40, 2867.
doi: 10.1039/c0cs00201a pmid: 21399789 |
|
(c) Drouin, M.; Hamel, J.-D.; Paquin, J.-F. Synthesis 2018, 50, 881.
doi: 10.1055/s-0036-1591867 pmid: 21399789 |
|
[7] |
(a) Xu, J.; Ahmed, E.-A.; Xiao, B.; Lu, Q.-Q.; Wang, Y.-L.; Yu, C.-G.; Fu, Y. Angew. Chem., Int. Ed. 2015, 54, 8231.
doi: 10.1002/anie.201502308 |
(b) Jiang, Z.-T.; Huang, J.; Zeng, Y.; Hu, F.; Xia, Y. Angew. Chem., nt. Ed. 2021, 60, 10626.
|
|
[8] |
(a) Wang, C.; Liu, Y.-C.; Xu, M.-Y.; Xiao, B. Org. Lett. 2021, 23, 4593.
doi: 10.1021/acs.orglett.1c01289 |
(b) Dutheuil, G.; Paturel, C.; Lei, X.; Couve-Bonnaire, S.; Pannecoucke, X. J. Org. Chem. 2006, 71, 4316.
doi: 10.1021/jo0604787 |
|
(c) Andrei, D.; Wnuk, S. F. J. Org. Chem. 2006, 71, 405.
doi: 10.1021/jo051980e |
|
(d) Schneider, C.; Masi, D.; Couve-Bonnaire, S.; Pannecoucke, X.; Hoarau, C. Angew. Chem.,Int. Ed. 2013, 52, 3246.
doi: 10.1002/anie.201209446 |
|
[9] |
(a) Koley, S.; Altman, R. A. Isr. J. Chem. 2020, 60, 313.
doi: 10.1002/ijch.v60.3-4 |
(b) Ma, T.; Chen, Y.; Li, Y.; Ping, Y.; Kong, W. ACS Catal. 2019, 9, 9127.
doi: 10.1021/acscatal.9b03172 |
|
(c) Li, J.; Rao, W.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2019, 84, 11542.
doi: 10.1021/acs.joc.9b01387 |
|
(d) Yang, L.; Ji, W.-W.; Lin, E.; Li, J.-L.; Fan, W.-X.; Li, Q.; Wang, H. Org. Lett. 2018, 20, 1924.
doi: 10.1021/acs.orglett.8b00471 |
|
[10] |
(a) Tian, P.; Feng, C.; Loh, T.-P. Nat. Commun. 2015, 6, 7472.
doi: 10.1038/ncomms8472 |
(b) Kong, L.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 6320.
doi: 10.1021/acs.orglett.6b03203 |
|
(c) Zell, D.; Dhawa, U.; Müller, V.; Bursch, M.; Grimme, S.; Ackermann, L. ACS Catal. 2017, 7, 4209.
doi: 10.1021/acscatal.7b01208 |
|
(d) Fuchibe, K.; Mayumi, Y.; Zhao, N.; Watanabe, S.; Yokota, M.; Ichikawa, J. Angew. Chem., Int. Ed. 2013, 52, 7825.
doi: 10.1002/anie.v52.30 |
|
[11] |
(a) Thornbury, R. T.; Toste, F. D. Angew. Chem., Int. Ed. 2016, 55, 11629.
doi: 10.1002/anie.201605651 pmid: 26077810 |
(b) Xiong, Y.; Huang, T.; Ji, X.; Wu, J.; Cao, S. Org. Biomol. Chem. 2015, 13, 7389.
doi: 10.1039/c5ob01016k pmid: 26077810 |
|
[12] |
(a) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-J.; Xiao, B.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 12632.
pmid: 30774912 |
(b) Du, H.-W.; Sun, J.; Gao, Q.-S.; Wang, J.-Y.; Wang, H.; Xu, Z.; Zhou, M.-D. Org. Lett. 2020, 22, 1542.
doi: 10.1021/acs.orglett.0c00134 pmid: 30774912 |
|
(c) Dai, W.; Shi, H.; Zhao, X.; Cao, S. Org. Lett. 2016, 18, 4284.
doi: 10.1021/acs.orglett.6b02026 pmid: 30774912 |
|
(d) Zhou, L.; Zhu, C.; Bi, P.; Feng, C. Chem. Sci. 2019, 10, 1144.
doi: 10.1039/c8sc04162h pmid: 30774912 |
|
(e) Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 9416.
doi: 10.1002/anie.v55.32 pmid: 30774912 |
|
(f) Yu, L.; Tang, M.-L.; Si, C.-M.; Meng, Z.; Liang, Y.; Han, J.; Sun, X. Org. Lett. 2018, 20, 4579.
doi: 10.1021/acs.orglett.8b01866 pmid: 30774912 |
|
(g) Yang, H.; Tian, C.; Qiu, D.; Tian, H.; An, G.; Li, G. Org. Chem. Front. 2019, 6, 2365.
doi: 10.1039/c9qo00495e pmid: 30774912 |
|
(h) Li, J.; Lefebvre, Q.; Yang, H.; Zhao, Y.; Fu, H. Chem. Commun. 2017, 53, 10299.
doi: 10.1039/C7CC05758J pmid: 30774912 |
|
[13] |
Lu, X.-Y.; Gao, A.; Ge, M.-Y.; Xia, Z.-J.; Liu, Q.-L.; Tao, T.-H.; Sun, X.-M. J. Org. Chem. 2022, 87, 4654.
doi: 10.1021/acs.joc.1c03088 |
[14] |
Lu, X.-Y.; Ge, M.-Y.; Tao, T.-H.; Sun, X.-M.; Gao, M.-T.; Bao, S.-T.; Liu, Q.-L.; Xia, Z.-J.; Xia, J. Org. Chem. Front. 2022, 9, 831.
doi: 10.1039/D1QO01567B |
[15] |
Lu, X.-Y.; Chen, X.-K.; Gao, M.-T.; Sun, X.-M.; Jiang, R.-C.; Wang, J.-C.; Yu, L.-J.; Ge, M.-Y.; Wei, Z.-H.; Liu, Z. Org. Chem. Front. 2022, 9, 4712.
doi: 10.1039/D2QO00977C |
[16] |
Chen, Y.; Du, J.; Zuo, Z. Chem 2020, 6, 266.
doi: 10.1016/j.chempr.2019.11.009 |
[17] |
(a) Xiao, T.; Zhou, L.; Huang, H.; Anand, D. Synthesis 2020, 52, 1585.
doi: 10.1055/s-0039-1690844 |
(b) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066.
doi: 10.1021/acs.accounts.0c00090 |
|
(c) Xiao, F.; Guo, Y.; Zeng, Y. F. Adv. Synth. Catal. 2021, 363, 120.
doi: 10.1002/adsc.v363.1 |
|
(d) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Chem. Soc. Rev. 2019, 48, 2615.
doi: 10.1039/C8CS00386F |
|
(e) Xiao, W.; Wu, J. Chin. Chem. Lett. 2020, 31, 3083.
doi: 10.1016/j.cclet.2020.07.035 |
|
(f) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
doi: 10.1021/acs.chemrev.0c00030 |
|
(g) Lu, X.-Y.; Liu, C.-C.; Jiang, R.-C.; Yan, L.-Y.; liu, Q.-L.; Wang, Q.-Q.; Li, J.-M. Chem. Commun. 2020, 56, 14191.
doi: 10.1039/D0CC06517J |
|
(h) Lu, X.-Y.; Xia, Z.-J.; Gao, A.; Liu, Q.-L.; Jiang, R.-C.; Liu, C.-C. J. Org. Chem. 2021, 86, 8829.
doi: 10.1021/acs.joc.1c00726 |
|
[18] |
(a) Nguyen, B.-N.; Cao, H.-T. Eur. J. Org. Chem. 2019, 20196, 5912.
|
(b) Matsumoto, A.; Nguyen, B.-N.; Honda, T.; Sakamoto, R.; Huang, X.; Sakaki, S.; Maruoka, K. Chem. Asian J. 2021, 16, 282.
doi: 10.1002/asia.v16.4 |
|
[19] |
(a) Chen, L.; Zhang, L.; Yan, G.; Huang, D. Asian J. Org. Chem. 2020, 9, 842.
doi: 10.1002/ajoc.v9.6 |
(b) Lu, X.-Y.; Li, J.-S.; Wang, S.-Q.; Zhu, Y.-J.; Li, Y.-M.; Yan, L.-Y.; Li, J.-M.; Wang, J.-Y.; Zhou, H.-P.; Ge, X.-T. Chem. Commun. 2019, 55, 11123.
doi: 10.1039/C9CC04795F |
[1] | Zhipeng Liang, Hao Ye, Haibin Zhang, Guomin Jiang, Xinxing Wu. Ring Opening Amination of gem-Difluorocyclopropanes with Cyclobutanone Hydrazones [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1483-1491. |
[2] | Chunyang Liu, Yan Li, Qian Zhang. Copper-Catalyzed Allylic C(sp3)—H Sulfonylation of Cyclic Olefins [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1091-1101. |
[3] | Jiayu Hu, Zhiqiang Zhu, Zongbo Xie, Zhanggao Le. Recent Advances in Visible-Light-Induced Decarboxylative Coupling Reactions of α-Amino Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 978-1001. |
[4] | Weiguo Yu, Lingna Wang, Xiaocong Yu, Shuping Luo. Fluorescent Dye/Nickel Synergistic Catalytic Decarboxylative Carbonylation Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1216-1223. |
[5] | Yamin Sun, Xiyong Li, Jinwei Yuan, Jialin Yu, Shuainan Liu. CuI-Catalyzed Regioselective Synthesis of 3-Arylcoumarins with Arylamines under Mild Conditions [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 631-640. |
[6] | Yuxi Zhu, Ting Xiao, Dong Xia, Wenchao Yang. Recent Advances in the Decarboxylative Fluoroalkylation of Fluoroalkyl Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4067-4077. |
[7] | Mingyang Sun, Kun Xu, Bingbing Guo, Chengchu Zeng. Copper-Catalyzed Vicinal C(sp2)—H Selenylation of Benzoic Acid Derivatives Using Air as Oxidant [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2302-2309. |
[8] | Dun Zhou, Aihong Fan, Xiang Li, Chunxia Chen, Peng Sun, Jinsong Peng. Copper-Catalyzed Decarboxylative Cross-Coupling of Carboxylic Acids and Arylcarbamoyl Chlorides [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1146-1152. |
[9] | Boshi Han, Zheng Shi, Huihong He, Xinghua Zhang. Study on the Copper-Catalyzed Selective Allylation of Aryl (or Alkyl) Halides [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 695-701. |
[10] | Hongyu Wu, Xianyong Yu, Zhong Cao. Electrochemical Multicomponent Synthesis of α-Ketoamides from α-Oxocarboxylic Acids, Isocyanides and Water [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4712-4717. |
[11] | Zhiqing Li, Xiaoyang Qiu, Jiang Lou, Qiang Wang. Progress in Visible-Light Catalyzed C—F Bond Functionalization of gem-Difluoroalkenes [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4192-4207. |
[12] | Xiang Zhou, Rujian Yu, Jiantao Wang, Xiangwen Liao, Yanshi Xiong. Copper-Catalyzed Remote Sulfonylation of 1-Naphthylamides with Sodium-Sulfinates [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4370-4377. |
[13] |
Feng Qin, Lin Tang, Fei Huang, Xiaoyue Li, Wu Zhang.
Copper-Catalyzed Three-Component Synthesis of Quinolines via Oxidation and Aza-Diels-Alder Reaction [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 318-324. |
[14] | Liu Boyu, Xu Xianjun, Huang Liliang, Feng Huangdi. One-Pot Synthesis of Unsymmetrical 1,4-Diaminobutynes by Cu(I)-Catalyzed Cross-Coupling of Propiolic Acid, Secondary Amine, Aldehydes and Formaldehyde [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1290-1296. |
[15] | Zhou Mingdong, Qin Pitao, Jing Like, Sun Jing, Du Haiwu. Progress in Photoinduced Decarboxylative Radical Cross-Coupling of Alkyl Carboxylic Acids and Their Derivatives [J]. Chinese Journal of Organic Chemistry, 2020, 40(3): 598-613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||