Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (11): 3966-3976.DOI: 10.6023/cjoc202305021 Previous Articles Next Articles
李倩敏a,b†, 王漫漫a†, 于文全a,*(), 常俊标a,*()
收稿日期:
2023-05-15
修回日期:
2023-06-23
发布日期:
2023-07-05
作者简介:
基金资助:
Qianmin Lia,b†, Manman Wanga†, Wenquan Yua(), Junbiao Changa()
Received:
2023-05-15
Revised:
2023-06-23
Published:
2023-07-05
Contact:
E-mail: About author:
Supported by:
Share
Qianmin Li, Manman Wang, Wenquan Yu, Junbiao Chang. Synthesis of β-Nitroamines and α-Aminonitriles by I2-Mediated Oxidative C—C Bond Formation[J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3966-3976.
Entry | 2a/equiv. | Base | Solvent | Temp. | t/h | Yieldb/% |
---|---|---|---|---|---|---|
1 | 2 | NaOAc | DCE | Reflux | 1 | Trace |
2 | 2 | NaOAc | Toluene | Reflux | 1 | Trace |
3 | 2 | NaOAc | DMSO | 100 °C | 1 | 34 |
4 | 2 | NaOAc | iPrOH | Reflux | 2 | 59 |
5 | 2 | NaOAc | MeCN | Reflux | 5.5 | 61 |
6 | 2 | NaOAc | THF | Reflux | 11 | 58 |
7 | 2 | NaOAc | 1,4-Dioxane | Reflux | 1 | 84 |
8 | 2 | NaOAc | 1,4-Dioxane | 80 °C | 1.5 | 32 |
9 | 1.5 | NaOAc | 1,4-Dioxane | Reflux | 1 | 72 |
10 | 2.5 | NaOAc | 1,4-Dioxane | Reflux | 1 | 92 |
11 | 3 | NaOAc | 1,4-Dioxane | Reflux | 1 | 87 |
12 | 2.5 | NaHCO3 | 1,4-Dioxane | Reflux | 4 | 19 |
13 | 2.5 | Na2CO3 | 1,4-Dioxane | Reflux | 4.5 | 74 |
14 | 2.5 | K2CO3 | 1,4-Dioxane | Reflux | 1 | 32 |
15 | 2.5 | K3PO4 | 1,4-Dioxane | Reflux | 0.5 | 49 |
16 | 2.5 | NaOH | 1,4-Dioxane | Reflux | 1.5 | 77 |
17 | 2.5 | KOtBu | 1,4-Dioxane | Reflux | 0.5 | 59 |
18 | 2.5 | DBU | 1,4-Dioxane | Reflux | 5 | Trace |
19 | 2.5 | NEt3 | 1,4-Dioxane | Reflux | 5 | Trace |
20c | 2.5 | NaOAc | 1,4-Dioxane | Reflux | 1.5 | 89 |
21d | 2.5 | NaOAc | 1,4-Dioxane | Reflux | 0.5 | 49 |
22e | 2.5 | NaOAc | 1,4-Dioxane | Reflux | 0.5 | 74 |
Entry | 2a/equiv. | Base | Solvent | Temp. | t/h | Yieldb/% |
---|---|---|---|---|---|---|
1 | 2 | NaOAc | DCE | Reflux | 1 | Trace |
2 | 2 | NaOAc | Toluene | Reflux | 1 | Trace |
3 | 2 | NaOAc | DMSO | 100 °C | 1 | 34 |
4 | 2 | NaOAc | iPrOH | Reflux | 2 | 59 |
5 | 2 | NaOAc | MeCN | Reflux | 5.5 | 61 |
6 | 2 | NaOAc | THF | Reflux | 11 | 58 |
7 | 2 | NaOAc | 1,4-Dioxane | Reflux | 1 | 84 |
8 | 2 | NaOAc | 1,4-Dioxane | 80 °C | 1.5 | 32 |
9 | 1.5 | NaOAc | 1,4-Dioxane | Reflux | 1 | 72 |
10 | 2.5 | NaOAc | 1,4-Dioxane | Reflux | 1 | 92 |
11 | 3 | NaOAc | 1,4-Dioxane | Reflux | 1 | 87 |
12 | 2.5 | NaHCO3 | 1,4-Dioxane | Reflux | 4 | 19 |
13 | 2.5 | Na2CO3 | 1,4-Dioxane | Reflux | 4.5 | 74 |
14 | 2.5 | K2CO3 | 1,4-Dioxane | Reflux | 1 | 32 |
15 | 2.5 | K3PO4 | 1,4-Dioxane | Reflux | 0.5 | 49 |
16 | 2.5 | NaOH | 1,4-Dioxane | Reflux | 1.5 | 77 |
17 | 2.5 | KOtBu | 1,4-Dioxane | Reflux | 0.5 | 59 |
18 | 2.5 | DBU | 1,4-Dioxane | Reflux | 5 | Trace |
19 | 2.5 | NEt3 | 1,4-Dioxane | Reflux | 5 | Trace |
20c | 2.5 | NaOAc | 1,4-Dioxane | Reflux | 1.5 | 89 |
21d | 2.5 | NaOAc | 1,4-Dioxane | Reflux | 0.5 | 49 |
22e | 2.5 | NaOAc | 1,4-Dioxane | Reflux | 0.5 | 74 |
Entry | I2/equiv. | Base | Solvent | Temp. | t/h | Yieldb/% |
---|---|---|---|---|---|---|
1 | 2 | NaOAc | 1,4-Dioxane | Reflux | 2.5 | 44 |
2 | 2 | NaOAc | DMSO | 100 °C | 4 | 41 |
3 | 2 | NaOAc | MeCN | Reflux | 4 | 58 |
4 | 2 | NaOAc | Toluene | Reflux | 0.5 | 68 |
5 | 2 | NaOAc | DCE | Reflux | 1 | 72 |
6 | 3 | NaOAc | DCE/MeCN (V:V=1:1) | Reflux | 4 | 88 |
7 | 3 | NaOAc | DCE/MeCN (V:V=2:1) | Reflux | 2 | 90 |
8 | 3 | NaOAc | DCE/MeCN (V:V=3:1) | Reflux | 1.5 | 77 |
9 | 3 | NaHCO3 | DCE/MeCN (V:V=2:1) | Reflux | 2.5 | 82 |
10 | 3 | Na2CO3 | DCE/MeCN (V:V=2:1) | Reflux | 3.5 | 46 |
11 | 3 | NaOH | DCE/MeCN (V:V=2:1) | Reflux | 4 | 65 |
12 | 3 | NaOAc | DCE/MeCN (V:V=2:1) | 60 °C | 14 | 78 |
13 | 4 | NaOAc | DCE/MeCN (V:V=2:1) | Reflux | 0.5 | 92 |
Entry | I2/equiv. | Base | Solvent | Temp. | t/h | Yieldb/% |
---|---|---|---|---|---|---|
1 | 2 | NaOAc | 1,4-Dioxane | Reflux | 2.5 | 44 |
2 | 2 | NaOAc | DMSO | 100 °C | 4 | 41 |
3 | 2 | NaOAc | MeCN | Reflux | 4 | 58 |
4 | 2 | NaOAc | Toluene | Reflux | 0.5 | 68 |
5 | 2 | NaOAc | DCE | Reflux | 1 | 72 |
6 | 3 | NaOAc | DCE/MeCN (V:V=1:1) | Reflux | 4 | 88 |
7 | 3 | NaOAc | DCE/MeCN (V:V=2:1) | Reflux | 2 | 90 |
8 | 3 | NaOAc | DCE/MeCN (V:V=3:1) | Reflux | 1.5 | 77 |
9 | 3 | NaHCO3 | DCE/MeCN (V:V=2:1) | Reflux | 2.5 | 82 |
10 | 3 | Na2CO3 | DCE/MeCN (V:V=2:1) | Reflux | 3.5 | 46 |
11 | 3 | NaOH | DCE/MeCN (V:V=2:1) | Reflux | 4 | 65 |
12 | 3 | NaOAc | DCE/MeCN (V:V=2:1) | 60 °C | 14 | 78 |
13 | 4 | NaOAc | DCE/MeCN (V:V=2:1) | Reflux | 0.5 | 92 |
[1] |
(a) Tan, J.-P.; Li, X.; Chen, Y.; Rong, X.; Zhu, L.; Jiang, C.; Xiao, K.; Wang, T. Sci. China Chem. 2020, 63, 1091.
doi: 10.1007/s11426-020-9754-7 |
(b) El Sayed, M. T.; Sarhan, A. E.; Ahmed, E.; Khattab, R. R.; Elnaggar, M.; El-Messery, S. M.; Shaldam, M. A.; Hassan, G. S. ChemistrySelect 2020, 5, 3445.
doi: 10.1002/slct.v5.11 |
|
[2] |
(a) Méndez-Álvarez, E.; Soto-Otero, R.; Sánchez-Sellero, I.; Lamas, M. L.-R. Life Sci. 1997, 60, 1719.
doi: 10.1016/s0024-3205(97)00114-8 pmid: 24936707 |
(b) Deng, X.; Lin, F.; Zhang, Y.; Li, Y.; Zhou, L.; Lou, B.; Li, Y.; Dong, J.; Ding, T.; Jiang, X.; Wang, R.; Ye, D. Eur. J. Med. Chem. 2014, 73, 1.
doi: 10.1016/j.ejmech.2013.12.002 pmid: 24936707 |
|
(c) Yang, R.; Ruan, Q.; Zhang, B.-Y.; Zheng, Z.-L.; Miao, F.; Zhou, L.; Geng, H.-L. Molecules 2014, 19, 8051.
doi: 10.3390/molecules19068051 pmid: 24936707 |
|
(d) Cao, F.-J.; Xu, M.-X.; Zhou, B.-H.; Du, Y.-S.; Yao, J.-H.; Zhou, L. Toxicol. In Vitro 2019, 54, 295.
doi: 10.1016/j.tiv.2018.10.007 pmid: 24936707 |
|
(e) Gajic, M.; Ilic, B. S.; Bondzic, B. P.; Dzambaski, Z.; Kojic, V. V.; Jakimov, D. S.; Kocic, G.; Smelcerovic, A. Chem. Biodiversity 2021, 18, e2100261.
doi: 10.1002/cbdv.v18.8 pmid: 24936707 |
|
[3] |
Pabuççuoglu, V.; Arar, G.; Gözler, T.; Freyer, A. J.; Shamma, M. J. Nat. Prod. 1989, 52, 716.
doi: 10.1021/np50064a008 |
[4] |
Romo-Pérez, A.; Miranda, L. D.; Chávez-Blanco, A. D.; Dueñas- González, A.; Camacho-Corona, M. d. R.; Acosta-Huerta, A.; García, A. Eur. J. Med. Chem. 2017, 138, 1.
doi: S0223-5234(17)30467-1 pmid: 28641156 |
[5] |
Hayashi, K.; Minoda, K.; Nagaoka, Y.; Hayashi, T.; Uesato, S. Bioorg. Med. Chem. Lett. 2007, 17, 1562.
doi: 10.1016/j.bmcl.2006.12.085 pmid: 17239594 |
[6] |
Cao, F.-J.; Yang, R.; Lv, C.; Ma, Q.; Lei, M.; Geng, H.-L.; Zhou, L. Eur. J. Pharm. Sci. 2015, 67, 45.
doi: 10.1016/j.ejps.2014.10.020 |
[7] |
(a) Dyker, G. Angew. Chem. Int. Ed. 1997, 36, 1700.
doi: 10.1002/anie.v36:16 pmid: 15527316 |
(b) Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017.
doi: 10.1016/j.tet.2003.11.016 pmid: 15527316 |
|
(c) Bernardi, L.; Bonini, B. F.; Capitó, E.; Dessole, G.; Comes-Franchini, M.; Fochi, M.; Ricci, A. J. Org. Chem. 2004, 69, 8168.
pmid: 15527316 |
|
(d) Murahashi, S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490.
doi: 10.1039/b706709g pmid: 15527316 |
|
[8] |
(a) Tsang, A. S.-K.; Todd, M. H. Tetrahedron Lett. 2009, 50, 1199.
|
(b) Nobuta, T.; Fujiya, A.; Yamaguchi, T.; Tada, N.; Miura, T.; Itoh, A. RSC Adv. 2013, 3, 10189.
doi: 10.1039/c3ra41850b |
|
(c) Liu, P.-Y.; Zhang, C.; Zhao, S.-C.; Yu, F.; Li, F.; He, Y.-P. J. Org. Chem. 2017, 82, 12786.
doi: 10.1021/acs.joc.7b02021 |
|
(d) Zhang, R.; Qin, Y.; Zhang, L.; Luo, S. J. Org. Chem. 2019, 84, 2542.
doi: 10.1021/acs.joc.8b02948 |
|
[9] |
(a) Chu, L.; Qing, F.-L. Chem. Commun. 2010, 46, 6285.
doi: 10.1039/c0cc01073a |
(b) Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.; Zhu, C. Chem. Commun. 2011, 47, 2354.
doi: 10.1039/C0CC03844J |
|
(c) Kumar, R. A.; Saidulu, G.; Prasad, K. R.; Kumar, G. S.; Sridhar, B.; Reddy, K. R. Adv. Synth. Catal. 2012, 354, 2985.
doi: 10.1002/adsc.v354.16 |
|
(d) Nobuta, T.; Tada, N.; Fujiya, A.; Kariya, A.; Miura, T.; Itoh, A. Org. Lett. 2013, 15, 574.
doi: 10.1021/ol303389t |
|
(e) Zhu, S.-L.; Ou, S.; Zhao, M.; Shen, H.; Wu, C.-D. Dalton Trans. 2015, 44, 2038.
doi: 10.1039/C4DT03371J |
|
(f) Liang, W.; Zhang, T.; Liu, Y.; Huang, Y.; Liu, Z.; Liu, Y.; Yang, B.; Zhou, X.; Zhang, J. ChemSusChem 2018, 11, 3586.
doi: 10.1002/cssc.v11.20 |
|
[10] |
(a) Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.
doi: 10.1021/ja909145y pmid: 34123323 |
(b) Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 12709.
pmid: 34123323 |
|
(c) Gandy, M. N.; Raston, C. L.; Stubbs, K. A. Chem. Commun. 2015, 51, 11041.
doi: 10.1039/C5CC02153G pmid: 34123323 |
|
(d) Wang, X.-Z.; Meng, Q.-Y.; Zhong, J.-J.; Gao, X.-W.; Lei, T.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. 2015, 51, 11256.
doi: 10.1039/C5CC03421C pmid: 34123323 |
|
(e) Li, X.; Li, Y.; Huang, Y.; Zhang, T.; Liu, Y.; Yang, B.; He, C.; Zhou, X.; Zhang, J. Green Chem. 2017, 19, 2925.
doi: 10.1039/C6GC03558B pmid: 34123323 |
|
(f) Chen, K.; Cheng, Y.; Chang, Y.; Li, E.; Xu, Q.-L.; Zhang, C.; Wen, X.; Sun, H. Tetrahedron 2018, 74, 483.
doi: 10.1016/j.tet.2017.12.019 pmid: 34123323 |
|
(g) Ide, T.; Shimizu, K.; Egami, H.; Hamashima, Y. Tetrahedron Lett. 2018, 59, 3258.
doi: 10.1016/j.tetlet.2018.07.030 pmid: 34123323 |
|
(h) Kosso, A. R. O.; Sellet, N.; Baralle, A.; Cormier, M.; Goddard, J.-P. Chem. Sci. 2021, 12, 6964.
doi: 10.1039/d1sc00998b pmid: 34123323 |
|
(i) Lin, C.; Li, P.; Wang, L. Tetrahedron Lett. 2021, 73, 153102.
doi: 10.1016/j.tetlet.2021.153102 pmid: 34123323 |
|
[11] |
(a) Baslé, O.; Li, C.-J. Green Chem. 2007, 9, 1047.
doi: 10.1039/b707745a |
(b) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005.
doi: 10.1021/ja8017362 |
|
(c) Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 835.
doi: 10.1039/C1OB06466E |
|
(d) Meng, Q.-Y.; Liu, Q.; Zhong, J.-J.; Zhang, H.-H.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2012, 14, 5992.
doi: 10.1021/ol3028785 |
|
(e) Brzozowski, M.; Forni, J. A.; Savage, G. P.; Polyzos, A. Chem. Commun. 2015, 51, 334.
doi: 10.1039/C4CC07913B |
|
(f) Patil, M. R.; Dedhia, N. P.; Kapdi, A. R.; Kumar, A. V. J. Org. Chem. 2018, 83, 4477.
doi: 10.1021/acs.joc.8b00203 |
|
(g) Wang, H.; Wang, A.; Xia, Z.; Zhou, W.; Sun, Z.; Qian, J.; He, M. Chin. J. Org. Chem. 2020, 40, 2099. (in Chinese)
doi: 10.6023/cjoc202004028 |
|
(王慧, 王安玮, 夏珍珍, 周维友, 孙中华, 钱俊峰, 何明阳, 有机化学, 2020, 40, 2099.)
doi: 10.6023/cjoc202004028 |
|
(h) Bjerg, E. E.; Marchan-Garcia, J.; Buxaderas, E.; Moglie, Y.; Radivoy, G. J. Org. Chem. 2022, 87, 13480.
doi: 10.1021/acs.joc.2c01782 |
|
[12] |
Tanoue, A.; Yoo, W.-J.; Kobayashi, S. Org. Lett. 2014, 16, 2346.
doi: 10.1021/ol500661t pmid: 24725125 |
[13] |
Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. Org. Lett. 2013, 15, 1092.
doi: 10.1021/ol4001153 pmid: 23419035 |
[14] |
(a) Liu, J.; Wei, W.; Zhao, T.; Liu, X.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2016, 81, 9326.
doi: 10.1021/acs.joc.6b01960 |
(b) Lv, Z.; Wang, B.; Hu, Z.; Zhou, Y.; Yu, W.; Chang, J. J. Org. Chem. 2016, 81, 9924.
doi: 10.1021/acs.joc.6b02100 |
|
[15] |
(a) Yi, X.; Zhao, Z.; Wang, M.; Yu, W.; Chang, J. Org. Lett. 2022, 24, 8703.
doi: 10.1021/acs.orglett.2c03630 |
(b) Wang, M.; Ye, W.; Sun, N.; Yu, W.; Chang, J. J. Org. Chem. 2023, 88, 1061.
doi: 10.1021/acs.joc.2c02509 |
|
[16] |
(a) Jayram, J.; Xulu, B. A.; Jeena, V. Tetrahedron 2019, 75, 130617.
doi: 10.1016/j.tet.2019.130617 |
(b) Huang, H.-Y.; Wu, H.-R.; Wei, F.; Wang, D.; Liu, L. Org. Lett. 2015, 17, 3702.
doi: 10.1021/acs.orglett.5b01662 |
|
(c) Gromada, J.; Matyjaszewski, K. Macromolecules 2001, 34, 7664.
doi: 10.1021/ma010864k |
|
(d) Wan, J.-P.; Zhong, S.; Guo, Y.; Wei, L. Eur. J. Org. Chem. 2017, 440.
|
|
[17] |
Tran, V. H.; La, M. T.; Kim, H.-K. Tetrahedron Lett. 2019, 60, 1860.
doi: 10.1016/j.tetlet.2019.06.019 |
[18] |
Yan, C.; Liu, Y.; Wang, Q. RSC Adv. 2014, 4, 60075.
doi: 10.1039/C4RA12922A |
[19] |
Zhang, L.; Peng, C.; Zhao, D.; Wang, Y.; Fu, H.-J.; Shen, Q.; Li, J.-X. Chem. Commun. 2012, 48, 5928.
doi: 10.1039/c2cc32009f |
[20] |
Huang, B.-Q.; Chen, Y.; Zhang, X.-J.; Yan, M. Eur. J. Org. Chem. 2021, 3015.
|
[21] |
Tian, H.; Xu, W.; Liu, Y.; Wang, Q. Chem. Commun. 2019, 55, 14813.
doi: 10.1039/C9CC08056B |
[22] |
Qian, W.; Zhou, X. Chinese J. Org. Chem. 2013, 33, 2430.
doi: 10.6023/cjoc201305052 |
[23] |
Tran, V. H.; La, M. T.; Kang, S.; Kim, H.-K. Org. Biomol. Chem. 2020, 18, 5008.
doi: 10.1039/D0OB00880J |
[24] |
Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2012, 124, 3702.
doi: 10.1002/ange.v124.15 |
[25] |
Zhou, J.; Li, L.; Wang, S.; Yan, M.; Wei, W. Green Chem. 2020, 22, 3421.
doi: 10.1039/D0GC01256D |
[26] |
Tsang, A. S.-K.; Hashmi, A. S. K.; Comba, P.; Kerscher, M.; Chan, B.; Todd, M. H. Chem.-Eur. J. 2017, 23, 9313.
doi: 10.1002/chem.v23.39 |
[27] |
Kim, H.-K.; Lee, A. Tetrahedron Lett. 2016, 57, 4890.
doi: 10.1016/j.tetlet.2016.09.038 |
[28] |
Casarini, D.; Davalli, S.; Lunazzi, L. J. Org. Chem. 1989, 54, 4616.
doi: 10.1021/jo00280a031 |
[29] |
Shu, X.-Z.; Xia, X.-F.; Yang, Y.-F.; Ji, K.-G.; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem. 2009, 74, 7464.
doi: 10.1021/jo901583r |
[30] |
Zhu, S.-S.; Liu, Y.; Chen, X.-L.; Qu, L.-B.; Yu, B. ACS Catal. 2022, 12, 126.
doi: 10.1021/acscatal.1c03765 |
[31] |
Yu, J.; Wang, Z.; Zhang, Y.; Su, W. Tetrahedron 2015, 71, 6116.
doi: 10.1016/j.tet.2015.06.105 |
[32] |
Zhang, G.; Ma, Y.; Cheng, G.; Liu, D.; Wang, R. Org. Lett. 2014, 16, 656.
doi: 10.1021/ol500045p pmid: 24479944 |
[33] |
Wang, J.-H.; Li, X.-B.; Li, J.; Lei, T.; Wu, H.-L.; Nan, X.-L.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. 2019, 55, 10376.
doi: 10.1039/C9CC05375A |
[34] |
Liu, L.; Wang, Z.; Fu, X.; Yan, C.-H. Org. Lett. 2012, 14, 5692.
doi: 10.1021/ol302708r |
[35] |
Xia, Q.; Zhang, W.; Li, Y.; Cheng, L.; Liang, X.; Dai, P. CN 112390696B, 2021.
|
[36] |
Mudithanapelli, C.; Dhorma, L. P.; Kim, M.-H. Org. Lett. 2019, 21, 3098.
doi: 10.1021/acs.orglett.9b00751 pmid: 30986072 |
[1] | Tongyang Cao, Wei Li, Lijing Wang. Recent Progress in N-Iodosuccinimide (NIS)-Mediated Iodination Reactions [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 508-524. |
[2] | Wenwen Chen, Qin Zhang, Songyue Zhang, Fangfang Huang, Xinyin Zhang, Jianfeng Jia. Visible Light Promoted Coupling Reaction of Alkynyl Iodide and Sodium Sulphinate without Photocatalyst [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 584-592. |
[3] | Min Xi, Chao Duan, Jie Chi, Tian Fu, Xiaolong Su, Hongshe Wang. An Efficient and Rapid Synthesis of α-Aminonitriles via Strecker Reaction Catalyzed by Humic Acid [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3312-3318. |
[4] | Jiaxia Pu, Xiaoying Jia, Lirong Han, Qinghan Li. Research Progress of Visible Light Promoted C—N Bond Fracture to Construct C—C Bond [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2591-2613. |
[5] | Ning Liu, Xiaodan Cuan, Hui Li, Xiyan Duan. Progress in the Study of α-Functionalization of Enaminone [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 602-621. |
[6] | Yu Zhao, Yurong Duan, Shihui Shi, Yubin Bai, Liangzhu Huang, Xiaojun Yang, Yantu Zhang, Bin Feng, Jianbo Zhang, Qiuyu Zhang. Recent Advances of Hypervalent Iodine(III) Reagents upon Visible Light Irradiation [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4106-4140. |
[7] | Huaiyuan Zhang, Nuo Xu, Rongping Tang, Xingli Shi. Recent Advances in Asymmetric Dearomatization Reactions Induced by Chiral Hypervalent Iodine Reagents [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3784-3805. |
[8] | Haojie Ma, Fengyuan Zhou, Fanwen Su, Bo Han, Ran Li, Yuqi Zhang, Jijiang Wang. Iodine-Promoted Transamidation of N,N-Dimethylacetamide (DMA) with Amines [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3960-3965. |
[9] | Xiaoxiao Yu, Wangheng Bai, Jianye Zhu, Yuting Zhang, Mengru Zhang, Jiwei Wu. Synthesis of Quinazolin-4(3H)-ones via Ammonium Iodide-Catalyzed Dual Amination of sp3 C—H Bonds [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2449-2455. |
[10] | Zhiwei Ma, Xiaopei Chen, Chuanchuan Wang, Jianling Wang, Jingchao Tao, Quanjian Lü. Chiral Squaramide Catalyzed Enantioselective Michael Addition of Cyclic 1,3-Diketones to β,γ-Unsaturated α-Keto Esters [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1520-1526. |
[11] | Jiajia Lu, Junli Yang, Jie Gu, Ju Yang, Zhenjie Gao, Lijiao Su, Xin Tao, Mingwei Yuan, Lijuan Yang. Mono-(6-diethylenetriamine-6-deoxy)-β-cyclodextrin Supramolecular Fluorescent Switch Constructed Based on Au3+ and I– [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1474-1482. |
[12] | Fufang Wu, Xuejian Li, Hao Jia, Xuanzhen Han, Xiaobao Shen. Iodine(III)-Promoted Oxidative Cross-Coupling Reactions of C—H Bonds via a Free Radical Process [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 884-890. |
[13] | Ruiqin Zhang, Renchao Ma, Qinjiao Fu, Jing Chen, Yongmin Ma. I2/PhNO2 Mediated Synthesis of Quinazolin-4(3H)-ones by C(CO)—C Bond Oxidative Cleavage of Acetophenones and Amination with 2-Aminobenzamides [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 854-862. |
[14] | Zhifang Yang, Yifu Cheng, Beibei Zhang, Yunyi Dong, Chi Han, Yunfei Du. Oxidative Rearrangement Reactions Mediated by Hypervalent-Iodine Reagents [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3456-3505. |
[15] | Zhupeng Gao, Kai Xiang, Xuetao Xu, Yating Zhang, Daoyong Zhu. α-Benzoyloxylation of β-Dicarbonyl Compounds Involving Cyclic Trivalent Iodine Reagents [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3766-3775. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||