Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (10): 3598-3607.DOI: 10.6023/cjoc202307030 Previous Articles Next Articles
Special Issue: 有机硅化学专辑-2023
收稿日期:
2023-07-31
修回日期:
2023-09-06
发布日期:
2023-09-08
基金资助:
Zhiyuan Chen, Mengwei Yang, Jianlin Xu, Yunhe Xu()
Received:
2023-07-31
Revised:
2023-09-06
Published:
2023-09-08
Contact:
*E-mail: Supported by:
Share
Zhiyuan Chen, Mengwei Yang, Jianlin Xu, Yunhe Xu. Regioselective Synthesis of β-Silyl-Substituted Vinylphosphine Oxides via Copper-Catalyzed Protosilylation of Dialkynylphosphine Oxides[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3598-3607.
Entry | Catalyst | Base (equiv.) | Additive (equiv.) | Solvent | Yieldb/% | |
---|---|---|---|---|---|---|
3a | 4a | |||||
1 | CuCN | NaOMe (0.75) | MeOH (1.5) | THF | N.D. | 0 |
2 | CuCN | Cs2CO3 (0.75) | MeOH (1.5) | THF | Trace | 0 |
3 | CuBr | Cs2CO3 (0.75) | MeOH (1.5) | DCM | 12 | 0 |
4 | CuBr | Cs2CO3 (0.15) | MeOH (1.5) | DCM | 21 | 0 |
5 | CuBr·Me2S | Cs2CO3 (0.15) | MeOH (3.0) | DCM | 58 | 4 |
6 | CuBr·Me2S | Cs2CO3 (0.15) | EtOH (3.0) | DCM | 61 | 9 |
7 | CuBr·Me2S | Cs2CO3 (0.15) | H2O (3.0) | DCM | 17 | 0 |
8 | CuBr·Me2S | Cs2CO3 (0.15) | Phenol (3.0) | DCM | 76 | 8 |
9 | CuBr·Me2S | CsF (0.15) | Phenol (3.0) | DCM | 64 | 3 |
10 | CuBr·Me2S | CsOAc (0.15) | Phenol (3.0) | DCM | 51 | 3 |
11 | CuBr·Me2S | Na2CO3 (0.15) | Phenol (3.0) | DCM | N.R. | 0 |
12 | CuBr·Me2S | NaOEt (0.15) | Phenol (3.0) | DCM | N.R. | 0 |
13 | CuBr·Me2S | Cs2CO3 (0.15) | Phenol (5.0) | DCM | 83 | 6 |
14 | CuBr·Me2S | Cs2CO3 (0.15) | 4-Nitrophenol (5.0) | DCM | 57 | 0 |
15 | CuBr·Me2S | Cs2CO3 (0.15) | 1-Naphtol (5.0) | DCM | 46 | 0 |
16 | CuBr·Me2S | Cs2CO3 (0.15) | 4-Methoxyphenol (5.0) | DCM | 72 | 2 |
17 | CuBr·Me2S | Cs2CO3 (0.15) | 3-Methoxyphenol (5.0) | DCM | 93 (86) | 5 |
Entry | Catalyst | Base (equiv.) | Additive (equiv.) | Solvent | Yieldb/% | |
---|---|---|---|---|---|---|
3a | 4a | |||||
1 | CuCN | NaOMe (0.75) | MeOH (1.5) | THF | N.D. | 0 |
2 | CuCN | Cs2CO3 (0.75) | MeOH (1.5) | THF | Trace | 0 |
3 | CuBr | Cs2CO3 (0.75) | MeOH (1.5) | DCM | 12 | 0 |
4 | CuBr | Cs2CO3 (0.15) | MeOH (1.5) | DCM | 21 | 0 |
5 | CuBr·Me2S | Cs2CO3 (0.15) | MeOH (3.0) | DCM | 58 | 4 |
6 | CuBr·Me2S | Cs2CO3 (0.15) | EtOH (3.0) | DCM | 61 | 9 |
7 | CuBr·Me2S | Cs2CO3 (0.15) | H2O (3.0) | DCM | 17 | 0 |
8 | CuBr·Me2S | Cs2CO3 (0.15) | Phenol (3.0) | DCM | 76 | 8 |
9 | CuBr·Me2S | CsF (0.15) | Phenol (3.0) | DCM | 64 | 3 |
10 | CuBr·Me2S | CsOAc (0.15) | Phenol (3.0) | DCM | 51 | 3 |
11 | CuBr·Me2S | Na2CO3 (0.15) | Phenol (3.0) | DCM | N.R. | 0 |
12 | CuBr·Me2S | NaOEt (0.15) | Phenol (3.0) | DCM | N.R. | 0 |
13 | CuBr·Me2S | Cs2CO3 (0.15) | Phenol (5.0) | DCM | 83 | 6 |
14 | CuBr·Me2S | Cs2CO3 (0.15) | 4-Nitrophenol (5.0) | DCM | 57 | 0 |
15 | CuBr·Me2S | Cs2CO3 (0.15) | 1-Naphtol (5.0) | DCM | 46 | 0 |
16 | CuBr·Me2S | Cs2CO3 (0.15) | 4-Methoxyphenol (5.0) | DCM | 72 | 2 |
17 | CuBr·Me2S | Cs2CO3 (0.15) | 3-Methoxyphenol (5.0) | DCM | 93 (86) | 5 |
[1] |
(a) Yamada M.; Honma I. Polymer 2005, 46, 2986.
doi: 10.1016/j.polymer.2005.02.056 |
(b) Ajellal N.; Thomas C. M.; Carpentier J.-F. Polymer 2008, 49, 4344.
doi: 10.1016/j.polymer.2008.07.059 |
|
(c) Macarie L.; Ilia G. Prog. Polym. Sci. 2010, 35, 1078.
doi: 10.1016/j.progpolymsci.2010.04.001 |
|
(d) Li Y.; Josowicz M.; Tolbert L. M. J. Am. Chem. Soc. 2010, 132, 10374.
doi: 10.1021/ja101585z |
|
[2] |
(a) Bialy L.; Waldmann H. Angew. Chem., Int. Ed. 2005, 44, 3814.
doi: 10.1002/anie.v44:25 pmid: 27787975 |
(b) Kumar T. S.; Zhou S.-Y.; Joshi B. V.; Balasubramanian R.; Yang T.; Liang B.-T.; Jacobson K. A. J. Med. Chem. 2010, 53, 2562.
doi: 10.1021/jm9018542 pmid: 27787975 |
|
(c) Sivendran S.; Jones V.; Sun D.; Wang Y.; Grzegorzewicz A. E.; Scherman M. S.; Napper A. D.; McCammon J. A.; Lee R. E.; Diamond S. L.; McNeil M. Bioorg. Med. Chem. 2010, 18, 896.
doi: 10.1016/j.bmc.2009.11.033 pmid: 27787975 |
|
(d) Horsman G. P.; Zechel D. L. Chem. Rev. 2017, 117, 5704.
doi: 10.1021/acs.chemrev.6b00536 pmid: 27787975 |
|
(e) Gao M.; Liu H.; Lian Y.; Gao X.; Geng Y.; Li W. Chin. J. Org. Chem. 2019, 39, 974.
doi: 10.6023/cjoc201808018 pmid: 27787975 |
|
[3] |
(a) Russell G. A.; Yao C.-F.; Tashtoush H. I.; Russell J. E.; Dedolph D. F. J. Org. Chem. 1991, 56, 663.
doi: 10.1021/jo00002a032 pmid: 27479243 |
(b) Enders D.; Wahl H.; Papadopoulos K. Tetrahedron 1997, 53, 12961.
doi: 10.1016/S0040-4020(97)00814-4 pmid: 27479243 |
|
(c) Kouno R.; Okauchi T.; Nakamura M.; Ichikawa. J.; Minami T. J. Org. Chem. 1998, 63, 6239.
doi: 10.1021/jo980467g pmid: 27479243 |
|
(d) Kouno R.; Tsubota T.; Okauchi. T.; Minami T. J. Org. Chem. 2000, 65, 4326.
pmid: 27479243 |
|
(e) Fernández-Pérez H.; Etayo P.; Panossian A.; Vidal-Ferran A. Chem. Rev. 2011, 111, 2119.
doi: 10.1021/cr100244e pmid: 27479243 |
|
(f) Dutartre M.; Bayardon J.; Jugé S. Chem. Soc. Rev. 2016, 45, 5771.
pmid: 27479243 |
|
[4] |
For selected papers on hydrophosphorylation of alkynes, see: (a) Han L.-B.; Tanaka M. J. Am. Chem. Soc. 1996, 118, 1571.
doi: 10.1021/ja953690t pmid: 29688020 |
(b) Takaki K.; Takeda M.; Koshoji G.; Shishido T.; Takehira K. Tetrahedron Lett. 2001, 42, 6357.
doi: 10.1016/S0040-4039(01)01280-1 pmid: 29688020 |
|
(c) Zhao C.-Q.; Han L.-B.; Goto M.; Tanaka M. Angew. Chem., Int. Ed. 2001, 40, 1929.
doi: 10.1002/(ISSN)1521-3773 pmid: 29688020 |
|
(d) Han L.-B.; Zhang C.; Yazawa H.; Shimada S. J. Am. Chem. Soc. 2004, 126, 5080.
doi: 10.1021/ja0494297 pmid: 29688020 |
|
(e) Nune S. K.; Tanaka M. Chem. Commun. 2007, 27, 2858.
pmid: 29688020 |
|
(f) Han L.-B.; Ono Y.; Shimada S. J. Am. Chem. Soc. 2008, 130, 2752.
doi: 10.1021/ja7108272 pmid: 29688020 |
|
(g) Ananikov V. P.;. Khemchyan L. L; Beletskaya I. P.; Starikova Z. A. Adv. Synth. Catal. 2010, 352, 2979.
doi: 10.1002/adsc.v352.17 pmid: 29688020 |
|
(h) Fadel A.; Legrand F.; Evano G.; Rabasso N. Adv. Synth. Catal. 2011, 353, 263.
doi: 10.1002/adsc.v353.2/3 pmid: 29688020 |
|
(i) Khemchyan L. L.; Ivanova J. V.; Zalesskiy S. S.; Ananikov V. P.; Beletskaya I. P.; Starikova Z. A. Adv. Synth. Catal. 2014, 356, 771.
doi: 10.1002/adsc.v356.4 pmid: 29688020 |
|
(j) Braun R. A.; Bradfield J. L.; Henderson C. B.; Mobarrez N.; Sheng Y.; O'Brien R. A.; Stenson A. C.; Davis J. H.; Mirjafari A. Green Chem. 2015, 17, 1259.
doi: 10.1039/C4GC01933D pmid: 29688020 |
|
(k) Fortunato L.; Moglie Y.; Dorn V.; Radivoy G. RSC Adv. 2017, 7, 18707.
doi: 10.1039/C7RA01037K pmid: 29688020 |
|
(l) Islas R. E.; García J. J. ChemCatChem 2017, 9, 4125.
doi: 10.1002/cctc.v9.21 pmid: 29688020 |
|
(m) Chen T.; Zhao C.-Q.; Han L.-B. J. Am. Chem. Soc. 2018, 140, 3139.
doi: 10.1021/jacs.8b00550 pmid: 29688020 |
|
(n) Huang H.; Zhu H.; Kang J. Y. Org. Lett. 2018, 20, 2778.
doi: 10.1021/acs.orglett.8b01065 pmid: 29688020 |
|
(o) Yang Z.; Gu X.;. Han L.-B; Wang J. Chem. Sci. 2020, 11, 7451.
doi: 10.1039/D0SC01049A pmid: 29688020 |
|
(p) Liu X.-T.; Han X.-Y.; Wu Y.; Sun Y.-Y.; Gao L.; Huang Z.; Zhang Q.-W. J. Am. Chem. Soc. 2021, 143, 11309.
doi: 10.1021/jacs.1c05649 pmid: 29688020 |
|
(q) Qian D.-W.; Yang J.; Wang G.-W.; Yang S.-D. J. Org. Chem. 2023, 88, 3539.
doi: 10.1021/acs.joc.2c02741 pmid: 29688020 |
|
(r) Wang W.-H.; Wu Y.; Qi P.-J.; Zhang Q.-W. ACS Catal. 2023, 13, 6994.
doi: 10.1021/acscatal.3c00539 pmid: 29688020 |
|
[5] |
(a) Mulla K.; Aleshire K. L.; Forster P. M.; Kang J. Y. J. Org. Chem. 2016, 81, 77.
doi: 10.1021/acs.joc.5b02184 |
(b) Kwak S.; Choi J.; Han J.; Lee S. Y. ACS Catal. 2022, 12, 212.
doi: 10.1021/acscatal.1c04242 |
|
[6] |
For selected papers on the transformation of functionalized alkenes via cross-coupling, see: (a) Hirao T.; Masunaga T.; Yamada N.; Ohshiro Y.; Agawa T. Bull. Chem. Soc. Jpn. 1982, 55, 909.
doi: 10.1246/bcsj.55.909 pmid: 15704924 |
(b) Kabalka G. W.; Guchhait S. K. Org. Lett. 2003, 5, 729.
pmid: 15704924 |
|
(c) Thielges S.; Bisseret P.; Eustache J. Org. Lett. 2005, 7, 681.
pmid: 15704924 |
|
(d) Evano G.; Tadiparthi K.; Couty F. Chem. Commun. 2011, 47, 179.
doi: 10.1039/C0CC01617A pmid: 15704924 |
|
(e) Hu J.; Zhao N.; Yang B.; Wang G.; Guo L.-N.; Liang Y.-M.; Yang S.-D. Chem.-Eur. J. 2011, 17, 5516.
doi: 10.1002/chem.v17.20 pmid: 15704924 |
|
(f) Liu L.; Wang Y.; Zeng Z.; Xu P.; Gao Y.; Yin Y.; Zhao Y. Adv. Synth. Catal. 2013, 355, 659.
doi: 10.1002/adsc.v355.4 pmid: 15704924 |
|
(g) Liu L. L.; Lv Y.; Wu Y.; Gao X.; Zeng Z.; Gao Y.; Tang G.; Zhao Y. RSC Adv. 2014, 4, 2322.
doi: 10.1039/C3RA45212C pmid: 15704924 |
|
(h) Li X.; Yang F.; Wu Y.; Wu Y. Org. Lett. 2014, 16, 992.
doi: 10.1021/ol4037242 pmid: 15704924 |
|
(i) Hu G.; Gao Y.; Zhao Y. Org. Lett. 2014, 16, 4464.
doi: 10.1021/ol502009b pmid: 15704924 |
|
(j) Wu Y.; Liu L. L.; Yan K.; Xu P.; Gao Y.; Zhao Y. J. Org. Chem. 2014, 79, 8118.
doi: 10.1021/jo501321m pmid: 15704924 |
|
(k) Xue J.-F.; Zhou S.-F.; Liu Y.-Y.; Pan X.; Zou J.-P.; Asekun O. T. Org. Biomol. Chem. 2015, 13, 4896.
doi: 10.1039/C5OB00404G pmid: 15704924 |
|
(l) Yuan J.-W.; Yang L.-R.; Mao P.; Qu L.-B. RSC Adv. 2016, 6, 87058.
doi: 10.1039/C6RA19002B pmid: 15704924 |
|
(m) Tang L.; Wen L.; Sun T.; Zhang D.; Yang Z.; Feng C.; Wang Z. Asian J. Org. Chem. 2017, 6, 1683.
doi: 10.1002/ajoc.v6.11 pmid: 15704924 |
|
(n) Liu L.; Zhou D.; Dong J.; Zhou Y.; Yin S.-F.; Han L.-B. J. Org. Chem. 2018, 83, 4190.
doi: 10.1021/acs.joc.8b00187 pmid: 15704924 |
|
(o) Liu T.; Wei L.; Zhao B.; Liu Y.; Wan J.-P. J. Org. Chem. 2021, 86, 9861.
doi: 10.1021/acs.joc.1c00862 pmid: 15704924 |
|
(p) Lu X.-Y.; Pan H.-Y.; Huang R.; Yang K.; Zhang X.; Wang Z.-Z.; Tao Q.-Q.; Yang G.-X.; Wang X.-J.; Zhou H.-P. Org. Lett. 2023, 25, 2476.
doi: 10.1021/acs.orglett.3c00631 pmid: 15704924 |
|
[7] |
For selected papers on transformation of functionalized alkenes via radical way, see: (a) Mao L.-L; Zhou A.-X.; Liu N.; Yang S.-D. Synlett 2014, 25, 2727.
doi: 10.1055/s-00000083 |
(b) Gui Q.; Hu L.; Chen X.; Liu J.; Tan Z. Chem. Commun. 2015, 51, 13922.
doi: 10.1039/C5CC04826E |
|
(c) Gu J.; Cai C. Org. Biomol. Chem. 2017, 15, 4226.
doi: 10.1039/C7OB00505A |
|
(d) Shen J.; Yu R.-X.; Luo Y.; Zhu L.-X.; Zhang Y.; Wang X.; Xiao B.; Cheng J.-B.; Yang B.; Li G.-Z. Eur. J. Org. Chem. 2019, 10, 2065.
|
|
(e) Xu Y.; Zhou X.; Chen L.; Ma Y.; Wu G. Org. Chem. Front. 2022, 9, 2471.
doi: 10.1039/D2QO00184E |
|
[8] |
(a) Wei X.-H.; Bai C.-Y.; Zhao L.-B.; Zhang P.; Li Z.-H.; Wang Y.-B.; Su Q. Chin. J. Chem. 2021, 39, 1855.
doi: 10.1002/cjoc.v39.7 |
(b) Xin N.; Lv Y.; Lian Y.; Lin Z.; Huang X.-Q.; Zhao C.-Q.; Wang Y. J. Org. Chem. 2023, 88, 2898.
doi: 10.1021/acs.joc.2c02563 |
|
[9] |
Dziuba K.; Frynas S.; Szwaczko K. Synthesis 2021, 53, 2142.
doi: 10.1055/s-0040-1705993 |
[10] |
(a) Houk K.; Hopf H.; Stang P.; Nicholas K. M.; Schore N.; Regitz M.; Nicolaou K. C.; Gleiter R.; Scott L.; Grubbs R.; Iwamura H.; Moore J.; Diederich F. Modern Acetylene Chemistry, Eds.: Stang, P. J.; Diederich, F., Wiley-VCH: Weinheim, Germany, New York, 2008.
|
(b) Trost B. M.; Genet J.-P.; Toullec P. Y.; Michelet V.; Fürstner A.; Schoffelen S.; Uhlig N.; Chinchilla R. Modern Alkyne Chemistry: Catalytic and Atom-economic Transformations, Eds.: Trost, B. M.; Li, C.-J., Wiley-VCH: Weinheim, Germany, New York, 2015.
|
|
[11] |
(a) Gil J. M.; Oh D. Y. J. Org. Chem. 1999, 64, 2950.
doi: 10.1021/jo982123w pmid: 30371092 |
(b) Braga A. L.; Alves E. F.; Silveira C. C.; Andrade L. H. ; Tetrahedron Lett. 2000, 41, 161.
doi: 10.1016/S0040-4039(99)02044-4 pmid: 30371092 |
|
(c) Braga A. L.; Andrade L. H.; Silveira C. C.; Moro A. V.; Zeni G. Tetrahedron Lett. 2001, 42, 8563.
doi: 10.1016/S0040-4039(01)01867-6 pmid: 30371092 |
|
(d) Braga A. L.; Vargas F.; Zeni G.; Silveira C. C.; Andrade L. H. Tetrahedron Lett. 2002, 43, 4399.
doi: 10.1016/S0040-4039(02)00778-5 pmid: 30371092 |
|
(e) Quntar A. A. A. A.; Dembitsky V. M.; Srebnik M. Org. Lett. 2003, 5, 357.
pmid: 30371092 |
|
(f) Quntar A. A. A.; Srebnik M. Chem. Commun. 2003, 1, 58.
doi: 10.1038/s42004-018-0061-8 pmid: 30371092 |
|
(g) Huang X.; Xu L. Synthesis 2006, 2, 231.
pmid: 30371092 |
|
(h) Kondoh A.; Yorimitsu H.; Oshima K. Chem. Asian. J. 2010, 5, 398.
doi: 10.1002/asia.v5:3 pmid: 30371092 |
|
(i) Fopp C.; Isaac K.; Romain E.; Chemla F.; Ferreira F.; Jackowski O.; Oestreich M.; Perez-Luna A. Synthesis 2017, 49, 724.
doi: 10.1055/s-0036-1588106 pmid: 30371092 |
|
(j) Zheng Y.; Guo L.; Zi W. Org. Lett. 2018, 20, 7039.
doi: 10.1021/acs.orglett.8b02982 pmid: 30371092 |
|
(k) Zhang Y.; Zhang F.; Chen L.; Xu J.; Liu X.; Feng X. ACS Catal. 2019, 9, 4834.
doi: 10.1021/acscatal.9b00860 pmid: 30371092 |
|
[12] |
(a) Mortensen M.; Husmann R.; Veri E.; Bolm C. Chem. Soc. Rev. 2009, 38, 1002.
doi: 10.1039/b816769a pmid: 29039662 |
(b) Franz A. K. Wilson S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 pmid: 29039662 |
|
(c) Rémond E.; Martin C.; Martinez J.; Cavelier F. Chem. Rev. 2016, 116, 11654.
doi: 10.1021/acs.chemrev.6b00122 pmid: 29039662 |
|
(d) Fujii S.; Hashimoto Y. Future Med. Chem. 2017, 9, 485.
doi: 10.4155/fmc-2016-0193 pmid: 29039662 |
|
(e) Barraza S. J.; Denmark S. E. J. Am. Chem. Soc. 2018, 140, 6668.
doi: 10.1021/jacs.8b03187 pmid: 29039662 |
|
(f) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779.
doi: 10.1021/acs.jmedchem.7b00718 pmid: 29039662 |
|
[13] |
For selected reviews and papers on the transformation of silylboronates, see: (a) Suginome M.; Nakamura H.; Ito Y.; Chem. Commun. 1996, 2777.
pmid: 23163551 |
(b) Ohmura T.; Suginome M. Bull. Chem. Soc. Jpn. 2009, 82, 29.
doi: 10.1246/bcsj.82.29 pmid: 23163551 |
|
(c) Oestreich M.; Hartmann E.; Mewald M. Chem. Rev. 2013, 113, 402.
doi: 10.1021/cr3003517 pmid: 23163551 |
|
(d) Hoveyda A. H.; Wu H.; Radomkit S.; Garcia J. M.; Haeffner F.; Lee K.-S. Activation of B-B and B-Si Bonds and Synthesis of Organoboron and Organosilicon Compounds through Lewis Base-Catalyzed Transformations (n→n*) in Lewis Base Catalysis in Organic Chemistry, Eds.: Vedejs, E.; Denmark, S. E., Wiley-VCH: Weinheim, Germany: 2016; Vol. 3.
pmid: 23163551 |
|
(e) Feng J.-J.; Mao W.; Zhang L.; Oestreich M. Chem. Soc. Rev. 2021, 50, 2010.
doi: 10.1039/D0CS00965B pmid: 23163551 |
|
(f) Han B.; Li W.; Chen S.; Zhang Z.; Zhao X.; Zhang Y.; Zhu L. Chin. J. Org. Chem. 2023, 43, 555.
doi: 10.6023/cjoc202207043 pmid: 23163551 |
|
[14] |
For selected recent examples on constructing the silicon-containing compounds reported by our group, see: (a) Wang M.; Liu Z.-L.; Zhang X.; Tian P.-P.; Xu Y.-H.; Loh T.-P. J. Am. Chem. Soc. 2015, 137, 14830.
doi: 10.1021/jacs.5b08279 pmid: 26560851 |
(b) Liu Z.-L.; Yang C.; Xue Q.-Y.; Zhao M.; Shan C.-C.; Xu Y.-H.; Loh T.-P. Angew. Chem., Int. Ed. 2019, 58, 16538.
doi: 10.1002/anie.v58.46 pmid: 26560851 |
|
(c) Yang C.; Liu Z.-L.; Dai D.-T.; Li Q.; Ma W.-W.; Zhao M.; Xu Y.-H. Org. Lett. 2020, 22, 1360.
doi: 10.1021/acs.orglett.9b04647 pmid: 26560851 |
|
(d) Li Q.; Wang Z.-L.; Lu H.-X.; Xu Y.-H. Org. Lett. 2022, 24, 2832.
doi: 10.1021/acs.orglett.2c00739 pmid: 26560851 |
|
(e) Li Q.; Wang Z.-L.; Xu Y.-H. Chin. Chem. Lett. 2023, 108150.
pmid: 26560851 |
|
(f) Qian Y.-S.; Wang Z.-L.; Jiang B.; Xiao Z.-Y.; Xu Y.-H. Org. Lett. 2023, 25, 3364.
doi: 10.1021/acs.orglett.3c00765 pmid: 26560851 |
|
[15] |
For representative papers on the protosilylation of alkynes, see: (a) Wang P.; Yeo X.-L.; Loh T.-P. J. Am. Chem. Soc. 2011, 133, 1254.
doi: 10.1021/ja109464u |
(b) Calderone J. A.; Santos W. L. Angew. Chem., Int. Ed. 2014, 53, 4154.
doi: 10.1002/anie.v53.16 |
|
(c) Hazra C. K.; Fopp C.; Oestreich M. Chem. Asian. J. 2014, 9, 3005.
doi: 10.1002/asia.v9.10 |
|
(d) Xu Y.-H.; Wu L.-H.; Wang J.; Loh T.-P. Chem. Commun. 2014, 50, 7195.
doi: 10.1039/C4CC01722F |
|
(e) Xuan Q.-Q.; Ren C.-L.; Liu L.; Li C.-J. Org. Biomol. Chem. 2015, 13, 5871.
doi: 10.1039/C5OB00694E |
|
(f) Garcia-Rubia A.; Romero-Revilla J. A.; Mauleon P.; Arrayás R. G.; Carretero J. C. J. Am. Chem. Soc. 2015, 137, 6857.
doi: 10.1021/jacs.5b02667 |
|
(g) Vercruysse S.; Jouvin K.; Riant O.; Evano G. Synthesis 2016, 48, 3373.
doi: 10.1055/s-0035-1562460 |
[1] | Cheng Luo, Yanli Yin, Zhiyong Jiang. Recent Advances in Asymmetric Synthesis of P-Chiral Phosphine Oxides [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1963-1976. |
[2] | Yaoyao Zhang, Lijie Zhou, Biao Han, Weishuang Li, Bojie Li, Lei Zhu. Research Progress of Chitosan Supported Copper Catalyst in Organic Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 33-53. |
[3] | Xin Chen, Chunxia Chen, Jinsong Peng. Research Progress of Cellulose and Its Derivatives Supported Copper Catalyst Catalyzed Organic Reactions [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1319-1336. |
[4] | Zhang Ping, Shi Haonan, Zhang Tianshu, Cai Peijun, Jiang Bo, Tu Shujiang. Alkynylphosphonation of Unactivated Olefins via Radical-Triggered 1,2-Alkynyl Migration [J]. Chinese Journal of Organic Chemistry, 2020, 40(2): 423-431. |
[5] | Xie Jianwei, Wang Xiaochuang, Wu Fengtian, Zhang Jie. Research Progress in Ligand-Assisted Copper-Catalyzed C-N Cross-Coupling Reaction in Aqueous Media or Pure Water [J]. Chinese Journal of Organic Chemistry, 2019, 39(11): 3026-3039. |
[6] | Wang Huabin, Fu Qiang, Zhang Zhijie, Gao Ming, Ji Jianxin, Yi Dong. Hydrochloric Acid-Promoted Copper/Iron-Cocatalyzed Deesterifica-tive Oxyphosphorylation of 2-Substituted Acrylates with H-Phosphine Oxides [J]. Chin. J. Org. Chem., 2018, 38(8): 1977-1984. |
[7] | Cai Liangzhen, Huang Zhen, Yang Liqun, Xie Xiaomin, Tao Xiaochun. Selective Aerobic Oxidation of Benzylic Alcohols Catalyzed by CuBr/1,8-Diazabicyclo[5.4.0]undec-7-ene [J]. Chin. J. Org. Chem., 2018, 38(12): 3326-3331. |
[8] | Zhou Limei, Lang Wencheng, Jiang Xiaohui, Huang Qiang, Yin Mengyun. L-Tyrosine-Grafted Graphene Copper for Catalyzing N-Arylation of Nitrogen Heterocycles [J]. Chin. J. Org. Chem., 2015, 35(11): 2340-2346. |
[9] | SHI Qi-Ying. Pd(PPh3)2Cl2-CuCl Catalyzed Chemoselectivity inCross-Coupling Reaction of Organic Hypervalent Iodo-heterocyclic Compound with Terminal Alkynes [J]. Chinese Journal of Organic Chemistry, 2004, 24(8): 912-915. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||