Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (5): 1494-1505.DOI: 10.6023/cjoc202311008 Previous Articles     Next Articles

REVIEWS

2,7-二芳基取代芴/芴酮的合成

李永清a,b, 彭雨晴b, 曹育才b,*(), 曹贵平a,*()   

  1. a 华东理工大学 化学工程联合国家重点实验室 上海 200237
    b 上海化工研究院有限公司 聚烯烃催化技术与高性能材料国家重点实验室 上海市聚烯烃催化技术重点实验 上海 200062
  • 收稿日期:2023-11-07 修回日期:2023-12-11 发布日期:2023-12-21
  • 基金资助:
    上海市青年科技启明星计划(22QB1402800)

Synthesis of 2,7-Diaryl Substituted Fluorenes and Fluorenones

Yongqing Lia,b, Yuqing Pengb, Yucai Caob(), Guiping Caoa()   

  1. a State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237
    b State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Co. Ltd., Shanghai 200062
  • Received:2023-11-07 Revised:2023-12-11 Published:2023-12-21
  • Contact: *E-mail: caoyc@srici.cn; gpcao@ecust.edu.cn
  • Supported by:
    Shanghai Rising-Star Program(22QB1402800)

2,7-Diaryl substituted fluorenes and fluorenones are widely used in fields of organic semiconductor, chemosensor, and metallocene catalysis. Traditional synthesis methods can not meet the requirements of flexible molecular structures and regulation of diverse properties. Aryl-aryl cross coupling reactions based on the catalysis of Pd and Ni complexes have become efficient methods for the preparation of 2,7-diaryl substituted fluorenes and fluorenones. Various types of metal catalysts with phosphine ligands and N-heterocyclic carbene ligands have been applied. The synthetic methods of 2,7-diaryl substituted fluorenones and 2,7-diaryl substituted fluorenes with or without 9-substitutions, and the conditions for the application of Pd and Ni complexes are reviewed. The challenges of various synthetic methods at present are summarized and a brief outlook on possible solutions is provided.

Key words: biaryl, fluorene, fluorenone, luminescent material, metallocene