Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (5): 1385-1402.DOI: 10.6023/cjoc202312014 Previous Articles Next Articles
REVIEWS
收稿日期:
2023-12-15
修回日期:
2024-01-13
发布日期:
2024-01-30
基金资助:
Received:
2023-12-15
Revised:
2024-01-13
Published:
2024-01-30
Contact:
*E-mail: Supported by:
Share
Chonglei Ji, Dewei Gao. Recent Advances in Catalytic Asymmetric Synthesis of Chiral 1,2-Bis(boronic) Esters[J]. Chinese Journal of Organic Chemistry, 2024, 44(5): 1385-1402.
[1] |
(a) Caldwell, J. J. Clin. Pharmacol. 1992, 32, 925.
pmid: 1447400 |
(b) Jozwiak, K.; Lough, W. J.; Wainer, I. W. Drug Stereochemistry: Analytical Methods and Pharmacology, 3rd ed., Informa, New York, 2012.
pmid: 1447400 |
|
(c) Rentsch, K. M. J. Biochem. Biophys. Methods 2002, 54, 1.
pmid: 1447400 |
|
[2] |
(a) Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed., Wiley-VCH, Weinheim, Germany, 2011.
pmid: 32612487 |
(b) Trippier, P. C.; McGuigan, C. Med. Chem. Commun. 2010, 1, 183.
pmid: 32612487 |
|
(c) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
pmid: 32612487 |
|
(d) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.
doi: 10.1002/anie.201101379 pmid: 32612487 |
|
(e) Xu, L.; Zhang, S.; Li, P. Chem. Soc. Rev. 2015, 44, 8848.
pmid: 32612487 |
|
(f) Brooks, W. L. A.; Sumerlin, B. S. Chem. Rev. 2016, 116, 1375.
pmid: 32612487 |
|
(g) Diner, C.; Szabó, K. J. J. Am. Chem. Soc. 2017, 139, 2.
pmid: 32612487 |
|
(h) Fyfe, J. W. B.; Watson, A. J. B. Chem 2017, 3, 31.
pmid: 32612487 |
|
(i) Rygus, J. P. G.; Crudden, C. M. J. Am. Chem. Soc. 2017, 139, 18124.
pmid: 32612487 |
|
(j) Namirembe, S.; Morken, J. P. Chem. Soc. Rev. 2019, 48, 3464.
doi: 10.1039/c9cs00180h pmid: 32612487 |
|
(k) He, Z.; Hu, Y.; Xia, C.; Liu, C. Org. Biomol. Chem. 2019, 17, 6099.
pmid: 32612487 |
|
(l) Kischkewitz, M.; Friese, F. W.; Studer, A. Adv. Synth. Catal. 2020, 362, 2077.
doi: 10.1002/adsc.201901503 pmid: 32612487 |
|
(m) Kalita, S. J.; Cheng, F.; Huang, Y.-Y. Adv. Synth. Catal. 2020, 362, 2778.
pmid: 32612487 |
|
(n) Yang, K.; Song, Q. Acc. Chem. Res. 2021, 54, 2298.
pmid: 32612487 |
|
(o) Yeung, K.; Mykura, R. C.; Aggarwal, V. K. Nat. Synth. 2022, 1, 117.
pmid: 32612487 |
|
(p) Jiang, X.-M.; Liu, X.-R.; Chen, A.; Zou, X.-Z.; Ge, J.-F.; Gao, D.-W. Eur. J. Org. Chem. 2022, e202101463.
pmid: 32612487 |
|
[3] |
(a) Viso, A.; Fernández de la Pradilla, R.; Tortosa, M. ACS Catal. 2022, 12, 10603.
|
(b) Wang, X.; Wang, Y.; Huang, W.; Xia, C.; Wu, L. ACS Catal. 2021, 11, 1.
|
|
[4] |
(a) Mlynarski, S. N.; Schuster, C. H.; Morken, J. P. Nature 2014, 505, 386.
pmid: 33180502 |
(b) Blaisdell, T. P.; Morken, J. P. J. Am. Chem. Soc. 2015, 137, 8712.
doi: 10.1021/jacs.5b05477 pmid: 33180502 |
|
(c) Crudden, C. M.; Ziebenhaus, C.; Rygus, J. P. G.; Ghozati, K.; Unsworth, P. J.; Nambo, M.; Voth, S.; Hutchinson, M.; Laberge, V. S.; Maekawa, Y.; Imao, D. Nat. Commun. 2016, 7, 11065.
pmid: 33180502 |
|
(d) Fawcett, A.; Nitsch, D.; Ali, M.; Bateman, J. M.; Myers, E. L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2016, 55, 14663.
pmid: 33180502 |
|
(e) Liu, X.; Sun, C.; Mlynarski, S.; Morken, J. P. Org. Lett. 2018, 20, 1898.
pmid: 33180502 |
|
(f) Davenport, E.; Fernandez, E. Chem. Commun. 2018, 54, 10104.
pmid: 33180502 |
|
(g) Fawcett, A.; Murtaza, A.; Gregson, C. H. U.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 4573.
pmid: 33180502 |
|
(h) Namirembe, S.; Yan, L.; Morken, J. P. Org. Lett. 2020, 22, 9174.
doi: 10.1021/acs.orglett.0c03134 pmid: 33180502 |
|
(i) Willems, S.; Toupalas, G.; Reisenbauer, J. C.; Morandi, B. A. Chem. Commun. 2021, 57, 3909.
pmid: 33180502 |
|
(j) Mali, M.; Sharma, G. V. M.; Ghosh, S.; Roisnel, T.; Carboni, B.; Berrée, F. J. Org. Chem. 2022, 87, 7649.
pmid: 33180502 |
|
(k) Xu, N.; Kong, Z.; Wang, J. Z.; Lovinger, G. J.; Morken, J. P. J. Am. Chem. Soc. 2022, 144, 17815.
pmid: 33180502 |
|
(l) Zhang, M.; Lee, P. S.; Allais, C.; Singer, R. A.; Morken, J. P. J. Am. Chem. Soc. 2023, 145, 8308.
pmid: 33180502 |
|
[5] |
Ma, X.; Murray, B.; Biscoe, M. R. Nat. Rev. Chem. 2020, 4, 584.
|
[6] |
Blair, D. J.; Tanini, D.; Bateman, J. M.; Scott, H. K.; Myers, E. L.; Aggarwal, V. K. Chem. Sci. 2017, 8, 2898.
|
[7] |
(a) Coombs. J. R.; Morken. J. P. Angew. Chem., Int. Ed. 2016, 55, 2636.
doi: 10.1002/anie.201507151 pmid: 30740530 |
(b) Obligacion, J. V.; Chirik, P. J. Nat. Rev. Chem. 2018, 2, 15.
doi: 10.1038/s41570-018-0001-2 pmid: 30740530 |
|
(c) Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.
pmid: 30740530 |
|
(d) Chen, J.-H.; Guo. J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
pmid: 30740530 |
|
(e) Li, Z.-L.; Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Chem. Soc. Rev. 2020, 49, 32.
pmid: 30740530 |
|
[8] |
Morgan, J. B.; Miller, S. P.; Morken, J. P. J. Am. Chem. Soc. 2003, 125, 8702.
|
[9] |
Miller, S. P.; Morgan, J. B.; Nepveux, V. F. J.; Morken, J. P. Org. Lett. 2004, 6, 131.
|
[10] |
Trudeau, S.; Morgan, J. B.; Shrestha, M.; Morken, J. P. J. Org. Chem. 2005, 70, 9538.
|
[11] |
Toribatake, K.; Nishiyama, H. Angew. Chem., Int. Ed. 2013, 52, 11011.
doi: 10.1002/anie.201305181 pmid: 24000239 |
[12] |
Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328.
|
[13] |
Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2006, 128, 74.
|
[14] |
Woodward, A. R.; Burks, H. E.; Chan, L. M.; Morken, J. P. Org. Lett. 2005, 7, 5505.
pmid: 16288542 |
[15] |
Pelz, N. F.; Morken, J. P. Org. Lett. 2006, 8, 4557.
|
[16] |
Kliman, L. T.; Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 13210.
doi: 10.1021/ja9047762 pmid: 19702329 |
[17] |
(a) Kliman, L. T.; Mlynarski, S. N.; Morken, J. P. Angew. Chem., Int. Ed. 2012, 51, 512.
pmid: 23862690 |
(b) Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2013, 135, 11222.
doi: 10.1021/ja4041016 pmid: 23862690 |
|
[18] |
Ferris, G. E.; Hong, K.; Roundtree, I. A.; Morken, J. P. J. Am. Chem. Soc. 2013, 135, 2501.
doi: 10.1021/ja400506j pmid: 23390951 |
[19] |
Coombs, J. R.; Zhang, L.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 16140.
doi: 10.1021/ja510081r pmid: 25387002 |
[20] |
(a) Byrom, N. T.; Grigg, R.; Kongkathip, B.; Reimer, G.; Wade, A. R. J. Chem. Soc., Perkin Trans. 1 1984, 1643.
|
(b) Page, P. C. B.; Rayner, C. M.; Sutherland, I. O. Tetrahedron Lett. 1986, 27, 3535.
|
|
(c) Page, P. C. B.; Rayner, C. M.; Sutherland, I. O. J. Chem. Soc., Chem. Commun. 1988, 356.
|
|
(d) Page, P. C. B.; Rayner, C. M.; Sutherland, I. O. J. Chem. Soc., Perkin Trans. 1 1990, 1375.
|
|
(e) Mayer, S. F.; Mang, H.; Steinreiber, A.; Saf, R.; Faber, K. Can. J. Chem. 2002, 80, 362.
|
|
[21] |
Nóvoa, L.; Trulli, L.; Parra, A.; Tortosa, M. Angew. Chem., Int. Ed. 2021, 60, 11763.
doi: 10.1002/anie.202101445 pmid: 33689223 |
[22] |
(a) Bonet, A.; Sole, C.; Gulyás, H.; Fernández, E. Org. Biomol. Chem. 2012, 10, 6621.
|
(b) Bonet, A.; Pubill-Ulldemolins, C.; Bo, C.; Gulyás, H.; Fernández, E. Angew. Chem., Int. Ed. 2011, 50, 7158.
|
|
[23] |
Fang, L.; Yan, L.; Haeffner, F.; Morken, J. P. J. Am. Chem. Soc. 2016, 138, 2508.
|
[24] |
Yan, L.; Meng, Y.; Haeffner, F.; Leon, R. M.; Crockett, M. P.; Morken, J. P. J. Am. Chem. Soc. 2018, 140, 3663.
doi: 10.1021/jacs.7b12316 pmid: 29442502 |
[25] |
Yan, L.; Morken, J. P. Org. Lett. 2019, 21, 3760.
doi: 10.1021/acs.orglett.9b01204 pmid: 31066564 |
[26] |
Lee, Y.; Jang, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 18234.
|
[27] |
Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160.
|
[28] |
Jung, H.-Y.; Yun, J. Org. Lett. 2012, 14, 2606.
|
[29] |
Zanghi, J. M.; Liu, S.; Meek, S. J. Org. Lett. 2019, 21, 5172.
|
[30] |
Radomkit, S.; Liu, Z.; Closs, A.; Mikus, M. S.; Hoveyda, A. H. Tetrahedron 2017, 73, 5011.
|
[31] |
Lee, H.; Lee, S.; Yun, J. ACS Catal. 2020, 10, 2069.
|
[32] |
Green, J. C.; Joannou, M. V.; Murray, S. A.; Zanghi, J. M.; Meek, S. J. ACS Catal. 2017, 7, 4441.
|
[33] |
Fan, Z.; Ye, M.; Wang, Y.; Qiu, J.; Li, W.; Ma, X.; Yang, K.; Song, Q. ACS Cent. Sci. 2022, 8, 1134.
|
[34] |
Morgan, J. B.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 15338.
|
[35] |
Paptchikhine, A.; Cheruku, P.; Engman, M.; Andersson, P. G. Chem. Commun. 2009, 5996.
|
[36] |
(a) Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633.
|
(b) Pye, D. R.; Mankad, N. P. Chem. Sci. 2017, 8, 1705.
|
|
(c) Fu, J.; Huo, X.; Li, B.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9747.
|
|
(d) Kim, U. B.; Jung, D. J.; Jeon, H. J.; Rathwell, K.; Lee, S.-g. Chem. Rev. 2020, 120, 13382.
|
|
(e) Tian, F.; Zhang, J.; Yang, W.-L.; Deng, W.-P. Chin. J. Org. Chem. 2020, 40, 3262.
|
|
(f) Huo, X.; Li, G.; Wang, X.; Zhang, W. Angew. Chem., Int. Ed. 2022, 61, e202210086.
|
|
(g) Wei, L.; Wang, C.-J. Chin. J. Chem. 2021, 39, 15.
|
|
(h) Martínez, S.; Veth, L.; Lainer, B.; Dydio, P. ACS Catal. 2021, 11, 3891.
|
|
(i) Wei, L.; Wang, C.-J. Chem. Catal. 2023, 3, 100455.
|
|
[37] |
(a) Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2006, 128, 3928.
pmid: 26662073 |
(b) Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768.
pmid: 26662073 |
|
(c) Zhu, B.; Lee, R.; Li, J.; Ye, X.; Hong, S.-N.; Qiu, S.; Coote, M. L.; Jiang, Z. Angew. Chem., Int. Ed. 2016, 55, 1299.
doi: 10.1002/anie.201507796 pmid: 26662073 |
|
(d) Li, Z.; Hu, B.; Wu, Y.; Fei, C.; Deng, L. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 1730.
pmid: 26662073 |
|
(e) Trost, B. M.; Zell, D.; Hohn, C.; Mata, G.; Maruniak, A. Angew. Chem., Int. Ed. 2018, 57, 12916.
pmid: 26662073 |
|
(f) Trost, B. M.; Schultz, J. E.; Chang, T.; Maduabum, M. R. J. Am. Chem. Soc. 2019, 141, 9521.
pmid: 26662073 |
|
(g) Yang, S.-Q.; Wang, Y.-F.; Zhao, W.-C.; Lin, G.-Q.; He, Z.-T. J. Am. Chem. Soc. 2021, 143, 7285.
pmid: 26662073 |
|
(h) Zhang, J.; Huo, X.; Xiao, J.; Zhao, L.; Ma, S.; Zhang, W. J. Am. Chem. Soc. 2021, 143, 12622.
pmid: 26662073 |
|
(i) Dai, J.; Li, L.; Ye, R.; Wang, S.; Wang, Y.; Peng, F.; Shao, Z. Angew. Chem., Int. Ed. 2023, 62, e202300756.
pmid: 26662073 |
|
[38] |
(a) Miralles, N.; Maza, R. J.; Fernández, E. Adv. Synth. Catal. 2018, 360, 1306.
pmid: 33319887 |
(b) Nallagonda, R.; Padala, K.; Masarwa, A. Org. Biomol. Chem. 2018, 16, 1050.
doi: 10.1039/c7ob02978k pmid: 33319887 |
|
(c) Wu, C.; Wang, J. Tetrahedron Lett. 2018, 59, 2128.
pmid: 33319887 |
|
(d) Cuenca, A. B.; Fernández, E. Chem. Soc. Rev. 2021, 50, 72.
doi: 10.1039/d0cs00953a pmid: 33319887 |
|
(e) Corro, M.; Salvado, O.; González, S.; Dominguez-Molano, P.; Fernández, E. Eur. J. Inorg. Chem. 2021, 2802.
pmid: 33319887 |
|
(f) Jo, W.; Lee, J. H.; Cho, S. H. Chem. Commun. 2021, 57, 4346.
pmid: 33319887 |
|
(g) Lee, Y.; Han, S.; Cho, S. H. Acc. Chem. Res. 2021, 54, 3917.
pmid: 33319887 |
|
(h) Zhang, C.; Hu, W.; Morken, J. P. ACS Catal. 2021, 11, 10660.
pmid: 33319887 |
|
(i) Paul, S.; Das, K. K.; Aich, D.; Manna, S.; Panda, S. Org. Chem. Front. 2022, 9, 838.
pmid: 33319887 |
|
[39] |
(a) Zhang, L.; Lovinǵer, G. J.; Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P. Science 2016, 351, 70.
pmid: 31062812 |
(b) Lovinger, G. J.; Aparece, M. D.; Morken, J. P. J. Am. Chem. Soc. 2017, 139, 3153.
doi: 10.1021/jacs.6b12663 pmid: 31062812 |
|
(c) Chierchia, M.; Law, C.; Morken, J. P. Angew. Chem., Int. Ed. 2017, 56, 11870.
doi: 10.1002/anie.201706719 pmid: 31062812 |
|
(d) Zhang, X.; Gao, C.; Morken, J. P. J. Am. Chem. Soc. 2023, 145, 16344.
pmid: 31062812 |
|
(e) For a review, see: Namirembe, S.; Morken, J. P. Chem. Soc. Rev. 2019, 48, 3464.
doi: 10.1039/c9cs00180h pmid: 31062812 |
|
[40] |
(a) Davis, C. R.; Luvaga, I. K.; Ready, J. M. J. Am. Chem. Soc. 2021, 143, 4921.
|
(b) Davis, C. R.; Fu, Y.; Liu, P.; Ready, J. M. J. Am. Chem. Soc. 2022, 144, 16118.
|
|
[41] |
(a) Ge, J.-F.; Zou, X.-Z.; Liu, X.-R.; Ji, C.-L.; Zhu, X.-Y.; Gao, D.-W. Angew. Chem., Int. Ed. 2023, 62, e202307447.
|
(b) Chen, A.; Qiao, Y.; Gao, D.-W. Angew. Chem., Int. Ed. 2023, 62, e202312605.
|
|
[42] |
Jiang, X.-M.; Ji, C.-L.; Ge, J.-F.; Zhao, J.-H.; Zhu, X.-Y.; Gao, D.-W. Angew. Chem., Int. Ed. 2024, 63, e202318441.
|
[1] | Guangli Xu, Hongping Han, Luwei Cao, Simin Hong, linyue Hai, Xiang Cui. Research Progress of Transition Metal-Catalyzed Synthesis of 1,3-Conjugated Dienyl Boron Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(5): 1480-1493. |
[2] | Sha Wang, Changpeng Chen, Xiaoming Zeng. Bipyridine Ligand-Promoted cis-Selective Hydroboration of Alkynes with Chromium Catalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2447-2453. |
[3] | Kai Lu, Haoqi Qu, Xi Chen, Hui Qiu, Jing Zheng, Mengtao Ma. Catalyst-Free and Solvent-Free Hydroboration of Alkynes and Alkenes with Catecholborane [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2197-2205. |
[4] | Sida Li, Xing-Zhong Shu, Lipeng Wu. Zirconium and Titanium Mediated Hydroboration of Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1751-1760. |
[5] | Yuyuan Liu, Yaqin Lei, Wen Yang, Wanxiang Zhao. Cobalt-Catalyzed Remote Hydroboration of Enamines [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1761-1771. |
[6] | Yan Dang, Chaohong Jia, Yalan Wang, Li Wang, Yafei Li, Yahong Li. Synthesis and Characterization of Zinc, Lithium and Magnesium Complexes Containing Pyrrolyl Ligands, and Utilization as Catalysts in Borylation of Aryl Iodides and Hydroboration of Aldehydes and Ketones [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1124-1135. |
[7] | Houxiang Lu, Bijie Li. Transition Metal Catalyzed Asymmetric Hydroboration of Internal Alkenes [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3167-3182. |
[8] | Yunshuai Huang, Xiaohui Jin, Fenglian Zhang, Yifeng Wang. 4-Dimethylaminopyridine-Boryl Radical Promoted Regioselective Radical Hydroboration of Electron-Deficient Alkenes [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1957-1967. |
[9] | Qian Xiao, Shenluo Zang, Zewei Chen, Weiwei Yao, Jing Zheng, Mengtao Ma. Synthesis of Zn-Li Bimetallic Compound and Its Catalytic Application in Hydroboration of Isocyanate [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 357-363. |
[10] | Zheng Yukun, Cao Xu, Li Jia, Hua Haiming, Yao Weiwei, Zhao Binlin, Ma Mengtao. Efficient Magnesium-Catalyzed Hydroboration of Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 2086-2093. |
[11] | Sun Yue, Guan Rui, Liu Zhaohong, Wang Yeming. Recent Advances in Hydroboration of Alkenes Catalyzed by Fe, Co and Ni [J]. Chinese Journal of Organic Chemistry, 2020, 40(4): 899-912. |
[12] | Liu Wenbo, Lu Zhan. Application of Pinacolborane in Catalytic Enantioselective Hydroboration of Ketones and Imines [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3596-3604. |
[13] | Xu Dongdong, Shan Chunhui, Bai Ruopeng, Lan Yu. Mechanism of Alkaline Earth Metal Catalyzed Hydroboration of Carbodiimides: A Theoretical Study [J]. Chin. J. Org. Chem., 2017, 37(5): 1231-1236. |
[14] | Yang Jimin, Li Ziqi, Zhu Shoufei. Progresses on the Application of Stable Borane Adducts in the Synthesis of Organoborons [J]. Chin. J. Org. Chem., 2017, 37(10): 2481-2497. |
[15] | Zhang Hua, Sun Hongjian, Li Xiaoyan. Application of Transition Metal Hydrides in the Activation and Functionalization of CO2 [J]. Chin. J. Org. Chem., 2016, 36(12): 2843-2857. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||