Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (8): 2331-2341.DOI: 10.6023/cjoc202203060 Previous Articles Next Articles
REVIEW
收稿日期:
2022-03-31
修回日期:
2022-05-04
发布日期:
2022-05-17
通讯作者:
王乐, 王晓明
作者简介:
Jinyu Zhanga, Tianfen Liub, Le Wanga(), Xiaoming Wangb()
Received:
2022-03-31
Revised:
2022-05-04
Published:
2022-05-17
Contact:
Le Wang, Xiaoming Wang
About author:
Share
Jinyu Zhang, Tianfen Liu, Le Wang, Xiaoming Wang. Recent Process in the in situ Generated Metal Nanocluster Catalysis[J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2331-2341.
[1] |
(a) Han, W. P. Introduction to Catalytic Chemistry, Science Press, Beijing, 2003. (in Chinese)
|
(韩维屏, 催化化学导论, 科学出版社, 北京, 2003.)
|
|
(b) Tang, X. D.; Wang, H.; Wang, F. Industrial Catalysis, Chemical Industry Press, Beijing, 2020. (in Chinese)
|
|
(唐晓东, 王宏, 汪芳, 工业催化, 化学工业出版社, 北京, 2020.)
|
|
(c) Rothenberg, G. Catalysis: Concepts and Green Applications, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
|
|
[2] |
(a) Liu, L.; Corma, A. Trends Chem. 2020, 2, 383.
doi: 10.1016/j.trechm.2020.02.003 |
(b) Eremin, D. B.; Ananikov, V. P. Coord. Chem. Rev. 2017, 346, 2.
doi: 10.1016/j.ccr.2016.12.021 |
|
[3] |
(a) Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740.
doi: 10.1021/ar300361m |
(b) Liu, J. ACS Catal. 2017, 7, 34.
doi: 10.1021/acscatal.6b01534 |
|
(c) Wang, A.; Li, Jun.; Zhang, T. Nat. Rev. Chem. 2018, 2, 65.
doi: 10.1038/s41570-018-0010-1 |
|
(d) Zhang, W.; Fu, Q.; Luo, Q.; Sheng, L.; Yang, J. JACS Au 2021, 1, 2130.;
doi: 10.1021/jacsau.1c00384 |
|
(e) Liu, L.; Corma, A. Chem. Rev. 2018, 118, 4981.
doi: 10.1021/acs.chemrev.7b00776 |
|
(f) Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Chem. Rev. 2020, 120, 623.
doi: 10.1021/acs.chemrev.9b00311 |
|
[4] |
(a) Buchwalter, P.; Rosé, J.; Braunstein, P. Chem. Rev. 2015, 115, 28.
doi: 10.1021/cr500208k pmid: 25545815 |
(b) Tang, J.; Zhao, L. Chem. Commun. 2020, 56, 1915.
doi: 10.1039/C9CC09354K pmid: 25545815 |
|
(c) Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Chem. Rev. 2020, 120, 526.
doi: 10.1021/acs.chemrev.8b00726 pmid: 25545815 |
|
(d) Somorjai, G. A.; Contreras, A. M.; Montano, M.; Rioux, R. M. Proc. Natl. Acad. Sci. 2006, 103, 10577.
doi: 10.1073/pnas.0507691103 pmid: 25545815 |
|
(e) Polte, J. CrystEngComm 2015, 17, 6809.
doi: 10.1039/C5CE01014D pmid: 25545815 |
|
[5] |
Russell, M. J.; White, C.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1977, 427.
|
[6] |
Collman, J. P.; Kosydar, K. M.; Bressan, M.; Lamanna, W.; Garrett, T. J. Am. Chem. Soc. 1984, 106, 2569.
doi: 10.1021/ja00321a014 |
[7] |
Bayram, E.; Linehan, J. C.; Fulton, J. L.; Szymczak, N. K.; Finke, R. G. ACS Catal. 2015, 5, 3876.
doi: 10.1021/acscatal.5b00315 |
[8] |
Kim, S.; Loose, F.; Bezdek, M. J.; Wang, X.; Chirik, P. J. J. Am. Chem. Soc. 2019, 141, 17900.
doi: 10.1021/jacs.9b09540 |
[9] |
Lavallo, V.; Canac, Y.; DeHope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem. Int. Ed. 2005, 44, 7236.
doi: 10.1002/anie.200502566 |
[10] |
Wei, Y.; Rao, B.; Cong, X.; Zeng, X. J. Am. Chem. Soc. 2015, 137, 9250.
doi: 10.1021/jacs.5b05868 pmid: 26172049 |
[11] |
(a) Wiesenfeldt, M. P.; Nairoukh, Z.; Li, W.; Glorius, F. Science 2017, 357, 908.
doi: 10.1126/science.aao0270 pmid: 31518488 |
(b) Wiesenfeldt, M. P.; Knecht, T.; Schlepphorst, C.; Glorius, F. Angew. Chem. Int. Ed. 2018, 57, 8297.
doi: 10.1002/anie.201804124 pmid: 31518488 |
|
(d) Wollenburg, M.; Moock, D.; Glorius, F. Angew. Chem. Int. Ed. 2019, 58, 6549.
doi: 10.1002/anie.201810714 pmid: 31518488 |
|
(e) Ling, L.; He, Y.; Zhang, X.; Luo, M.; Zeng, X. Angew. Chem. Int. Ed. 2019, 58, 6554.
doi: 10.1002/anie.201811210 pmid: 31518488 |
|
(f) Zhang, X.; Ling, L.; Luo, M.; Zeng, X. Angew. Chem. Int. Ed. 2019, 58, 16785.
doi: 10.1002/anie.201907457 pmid: 31518488 |
|
(g) Nairoukh, Z.; Wollenburg, M.; Schlepphorst, C.; Bergander, K.; Glorius, F. Nat. Chem. 2019, 11, 264.
doi: 10.1038/s41557-018-0197-2 pmid: 31518488 |
|
[12] |
(a) Tran, B. L.; Fulton, J. L.; Linehan, J. C.; Lercher, J. A.; Bullock, R. M. ACS Catal. 2018, 8, 8441.
doi: 10.1021/acscatal.8b02589 |
(b) Tran, B. L.; Fulton, J. L.; Linehan, J. C.; Balasubramanian, M.; Lercher, J. A.; Bullock, R. M. ACS Catal. 2019, 9, 4106.
doi: 10.1021/acscatal.8b04929 |
|
[13] |
Hansen, M. R.; Glorius, F. ACS Catal. 2020, 10, 6309.
doi: 10.1021/acscatal.0c01074 |
[14] |
Gartner, D.; Stein, A. L.; Grupe, S.; Arp, J.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed. 2015, 54, 10545.
doi: 10.1002/anie.201504524 |
[15] |
Gieshoff, T. N.; Chakraborty, U.; Villa, M.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed. 2017, 56, 3585.
doi: 10.1002/anie.201612548 pmid: 28233953 |
[16] |
Dai, H.; Guan, H. ACS. Catal. 2018, 8, 9125.
doi: 10.1021/acscatal.8b02645 |
[17] |
Sandl, S.; Schwarzhuber, F.; Pollath, S.; Zweck, J.; Jacobi von Wangelin, A. Chem.-Eur. J. 2018, 24, 3403.
doi: 10.1002/chem.201705366 |
[18] |
Gregori, B. J.; Nowakowski, M.; Schoch, A.; Pöllath, S.; Zweck, J.; Bauer, M.; Jacobi von Wangelin, A. ChemCatChem 2020, 12, 5359.
doi: 10.1002/cctc.202000994 |
[19] |
Buslov, I.; Song, F.; Hu, X. Angew. Chem. Int. Ed. 2016, 55, 12295.
doi: 10.1002/anie.201606832 pmid: 27612210 |
[20] |
Rivero-Crespo, M. A.; Leyva-Perez, A.; Corma, A. Chem.-Eur. J. 2017, 23, 1702.
doi: 10.1002/chem.201605520 pmid: 27906484 |
[21] |
Li, C.; Song, S.; Li, Y.; Xu, C.; Luo, Q.; Guo, Y.; Wang, X. Nat. Commun. 2021, 12, 3813.
doi: 10.1038/s41467-021-24117-5 |
[22] |
(a) Docherty, J. H.; Peng, J.; Dominey, A. P.; Thomas, S. P. Nat. Chem. 2017, 9, 595.
doi: 10.1038/nchem.2697 pmid: 28537588 |
(b) Peng, J.; Thomas, S. P. Synlett 2020, 31, 1140.
doi: 10.1055/s-0039-1690873 pmid: 28537588 |
|
[23] |
Ghosh, P.; Schoch, R.; Bauer, M.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed. 2022, 61, e202110821.
|
[24] |
Oliver-Meseguer, J.; Cabrero-Antonino, J. R.; Domínguez, I.; Leyva-Pérez, A.; Corma, A. Science 2012, 338, 1452.
doi: 10.1126/science.1227813 pmid: 23239732 |
[25] |
Leyva-Pérez, A.; Oliver-Meseguer, J.; Rubio-Marqués, P.; Corma, A. Angew. Chem. Int. Ed. 2013, 52, 11554.
doi: 10.1002/anie.201303188 pmid: 24038914 |
[26] |
Oliver-Meseguer, J.; Liu, L.; Garcia-Garcia, S.; Canos-Gimenez, C.; Dominguez, I.; Gavara, R.; Domenech-Carbo, A.; Concepcion, P.; Leyva-Perez, A.; Corma, A. J. Am. Chem. Soc. 2015, 137, 3894.
doi: 10.1021/jacs.5b00222 pmid: 25747902 |
[27] |
Neumeier, M.; Chakraborty, U.; Schaarschmidt, D.; de la Pena O'Shea, V.; Perez-Ruiz, R.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed. 2020, 59, 13473.
doi: 10.1002/anie.202000907 pmid: 32190960 |
[28] |
Song, S.; Li, C.; Liu, T.; Zhang, P.; Wang, X. Org. Lett. 2021, 23, 6925.
doi: 10.1021/acs.orglett.1c02493 |
[1] | Ling Meng, Jun Wang. Research Progress on Synthesis of Thioflavonoids [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 873-891. |
[2] | Yan Zeng, Fei Ye. Research Progress on New Catalytic Reaction Systems for Asymmetric Synthesis of Silicon-Stereogenic Center Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3388-3413. |
[3] | Kexin Li, Qingyuan Yang, Pengpeng Zhang, Wuyuan Zhang. Research Progress of Peroxygenase-Catalyzed Reactions Driven by in-situ Generation of H2O2 [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 732-741. |
[4] | Xudong Hu, Xinliang Zhang, Wenbo Liu. Advances of Chiral Spiro Skeleton-Based Bisnitrogen Ligands in Transition-Metal Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3102-3117. |
[5] | Xiao Xiao, Jianchao Liu. Progress in the Synthesis of C(sp2)—C(sp3) Bond by Reductive Heck Reactions of Alkenes [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3349-3365. |
[6] | Zhiyan Ma, Yunjian Li, Xiao-Qiang Sun, Ke Yang, Zheng-Yi Li. Calixarene Promoted Transition-Metal-Catalyzed Reactions [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2188-2201. |
[7] | Zepeng Zhang, Yunpeng Gao, Shufeng Chen, Jianbo Wang. Transition-Metal-Catalyzed Polymerization of Cyclopropenes [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1888-1896. |
[8] | Weilin Wang, Weidong Chen, Junfei Luo, Pan Xie. Recent Advances in C—H Fluorination and Amination with N-Fluorobenzenesulfonimide [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 543-552. |
[9] | Sun Kai, Liu Haidong, Xie Qi, Luo Haiqing. Progress in the Synthesis of Arylphosphonates via Ar-P Bond Construction [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2275-2289. |
[10] | Zhu Dong-Xing, Xu Ming-Hua. Transition Metal-Catalyzed Asymmetric Addition of Organoboron Reagents to Aldehydes and Ketones [J]. Chinese Journal of Organic Chemistry, 2020, 40(2): 255-275. |
[11] | Chen Si, Zhao Yanchuan. C(sp3)—C(sp3) Bond Formation via Transition-Metal Mediated and Catalyzed Reductive Homocouplings [J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3078-3093. |
[12] | Huang Hongtai, Li Tao, Wang Jiazhuang, Qin Guiping, Xiao Tiebo. Recent Advance in Transition-Metal-Catalyzed Silylation of C-H Bonds [J]. Chin. J. Org. Chem., 2019, 39(6): 1511-1521. |
[13] | Wang Mingfeng, Yu Maodong, Wang Wenshu, Lin Weili, Luo Feixian. Cross-Coupling of C-Si Bond by Using Silyl Reagents [J]. Chinese Journal of Organic Chemistry, 2019, 39(11): 3145-3153. |
[14] | Li Mingrui, Ding Qifeng, Li Boyang, Yu Yang, Huang He, Huang Fei. Progress in the Synthesis of 1,2,4-Triazines by Tandem Cyclization [J]. Chinese Journal of Organic Chemistry, 2019, 39(10): 2713-2725. |
[15] | Qian Shaoping, Ma Yaorui, Gao Shanshan, Luo Junfei. Recent Progress on the Synthesis of Phenols through C-H Hydroxylation of Aromatics [J]. Chin. J. Org. Chem., 2018, 38(8): 1930-1939. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||