Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (9): 2914-2924.DOI: 10.6023/cjoc202204043 Previous Articles Next Articles
ARTICLES
陈天煜, 韩峰, 李双艳, 刘建平, 陈建辉*(), 徐清*()
收稿日期:
2022-04-16
修回日期:
2022-05-19
发布日期:
2022-06-08
通讯作者:
陈建辉, 徐清
基金资助:
Tianyu Chen, Feng Han, Shuangyan Li, Jianping Liu, Jianhui Chen(), Qing Xu()
Received:
2022-04-16
Revised:
2022-05-19
Published:
2022-06-08
Contact:
Jianhui Chen, Qing Xu
Supported by:
Share
Tianyu Chen, Feng Han, Shuangyan Li, Jianping Liu, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic C-Alkylation of Methyl N-Heteroarenes with Alcohols[J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2914-2924.
Entry | Base (equiv.) | T, t | Conv.b/% of 1a | 3aa/4a ratiob | Yieldc/% of 3a |
---|---|---|---|---|---|
1 | KOH (0.5) | 120 oC, 15 h | 51 | 64/36 | 33 |
2d | KOH (0.5) | 120 oC, 24 h | 59 | 8/92 | 5 |
3e | KOH (0.5) | 120 oC, 24 h | 59 | <1/99 | Trace |
4 | KOH (1.0) | 120 oC, 24 h | 66 | 68/32 | 45 |
5 | KOH (0.5) | 140 oC, 12 h | 62 | 65/35 | 40 |
6 | KOH (1.0) | 140 oC, 12 h | 93 | 98/2 | 91 (83) |
7 | CsOH (1.0) | 140 oC, 12 h | 89 | 98/2 | 87 (80) |
8 | NaOH (1.0) | 140 oC, 12 h | 50 | 18/82 | 9 |
9 | t-BuONa (1.0) | 140 oC, 12 h | 15 | <1/99 | Trace |
10 | t-BuOK (1.0) | 140 oC, 12 h | 84 | 92/8 | 77 |
11f | KOH (1.0) | 140 oC, 12 h | — | — | 0~Trace |
12g | KOH (1.0) | 140 oC, 12 h | — | — | Trace |
13h | KOH (1.0) | 140 oC, 24 h | 90 | 90/10 | 81 (71) |
14i | KOH (1.0) | 140 oC, 12 h | 86~98 | 67/33~87/13 | 57~85 |
15j | KOH (1.0) | 140 oC, 12 h | 16~28 | >99/1 | 16~28 |
16k | KOH (1.0) | 140 oC, 12 h | 13 | >99/1 | 13[ |
17l | KOH (1.0) | 140 oC, 12 h | 64 | 98/2 | 63 (55) |
18m | KOH (1.0) | 140 oC, 12 h | 98 | 94/6 | 92 (92) |
Entry | Base (equiv.) | T, t | Conv.b/% of 1a | 3aa/4a ratiob | Yieldc/% of 3a |
---|---|---|---|---|---|
1 | KOH (0.5) | 120 oC, 15 h | 51 | 64/36 | 33 |
2d | KOH (0.5) | 120 oC, 24 h | 59 | 8/92 | 5 |
3e | KOH (0.5) | 120 oC, 24 h | 59 | <1/99 | Trace |
4 | KOH (1.0) | 120 oC, 24 h | 66 | 68/32 | 45 |
5 | KOH (0.5) | 140 oC, 12 h | 62 | 65/35 | 40 |
6 | KOH (1.0) | 140 oC, 12 h | 93 | 98/2 | 91 (83) |
7 | CsOH (1.0) | 140 oC, 12 h | 89 | 98/2 | 87 (80) |
8 | NaOH (1.0) | 140 oC, 12 h | 50 | 18/82 | 9 |
9 | t-BuONa (1.0) | 140 oC, 12 h | 15 | <1/99 | Trace |
10 | t-BuOK (1.0) | 140 oC, 12 h | 84 | 92/8 | 77 |
11f | KOH (1.0) | 140 oC, 12 h | — | — | 0~Trace |
12g | KOH (1.0) | 140 oC, 12 h | — | — | Trace |
13h | KOH (1.0) | 140 oC, 24 h | 90 | 90/10 | 81 (71) |
14i | KOH (1.0) | 140 oC, 12 h | 86~98 | 67/33~87/13 | 57~85 |
15j | KOH (1.0) | 140 oC, 12 h | 16~28 | >99/1 | 16~28 |
16k | KOH (1.0) | 140 oC, 12 h | 13 | >99/1 | 13[ |
17l | KOH (1.0) | 140 oC, 12 h | 64 | 98/2 | 63 (55) |
18m | KOH (1.0) | 140 oC, 12 h | 98 | 94/6 | 92 (92) |
[1] |
(a) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
doi: 10.1021/ja910900p pmid: 26316601 |
(b) Zhang, S. Y.; He, G.; Nack, W. A.; Zhao, Y. S.; Li, Q.; Chen, G. J. Am. Chem. Soc. 2013, 135, 2124.
doi: 10.1021/ja312277g pmid: 26316601 |
|
(c) Pedroni, J.; Boghi, M.; Saget, T.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 9064.
doi: 10.1002/anie.201405508 pmid: 26316601 |
|
(d) Zhu, Z. Y.; He, J.; Wang, X. C.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 13194.
doi: 10.1021/ja508165a pmid: 26316601 |
|
(e) Mo, F. Y.; Dong, G. B. Science 2014, 345, 68.
doi: 10.1126/science.1254465 pmid: 26316601 |
|
(f) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. Science 2015, 349, 1532.
doi: 10.1126/science.aac8555 pmid: 26316601 |
|
(g) Li, B.; Darcel, C.; Dixneuf, P. H. Chem. Commun. 2014, 50, 5970.
doi: 10.1039/C4CC00931B pmid: 26316601 |
|
(h) Luo, W.; Yang, K.; Yin, B. Chin. J. Org. Chem. 2020, 40, 2290. (in Chinese)
doi: 10.6023/cjoc202004024 pmid: 26316601 |
|
(罗文坤, 杨凯, 尹标林, 有机化学, 2020, 40, 2290.)
doi: 10.6023/cjoc202004024 pmid: 26316601 |
|
[2] |
(a) Pasquinet, E.; Rocca, P.; F.; Marsais, Godard, A.; Quéguiner, G. Tetrahedron 1998, 54, 8771.
doi: 10.1016/S0040-4020(98)00507-9 |
(b) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092.
doi: 10.1021/ja806781u |
|
(c) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2009, 131, 12056.
doi: 10.1021/ja904441a |
|
(d) Trost, B. M.; Thaisrivongs, D. A.; Hartwig, J. J. Am. Chem. Soc. 2011, 133, 12439.
doi: 10.1021/ja205523e |
|
(e) Verdía, P.; González, E. J.; Rodríguez-Cabo, B.; Tojo, E. Green Chem. 2011, 13, 2768.
doi: 10.1039/c1gc15408g |
|
[3] |
(a) Niwa, T.; Yorimitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2007, 46, 2643.
doi: 10.1002/anie.200604472 pmid: 21786835 |
(b) Schipper, D. J.; Campeau, L.-C.; Fagnou, K. Tetrahedron 2009, 65, 3155.
doi: 10.1016/j.tet.2008.12.004 pmid: 21786835 |
|
(c) Burton, P. M.; Morris, J. A. Org. Lett. 2010, 12, 5359.
doi: 10.1021/ol102276e pmid: 21786835 |
|
(d) Song, G.; Su, Y.; Gong, X.; Han, K.; Li, X. Org. Lett. 2011, 13, 1968.
doi: 10.1021/ol200345a pmid: 21786835 |
|
(e) Duez, S.; Steib, A. K.; Manolikakes, S. M.; Knochel, P. Angew. Chem. Int. Ed. 2011, 50, 7686.
doi: 10.1002/anie.201103074 pmid: 21786835 |
|
(f) Shang, R.; Huang, Z.; Chu, L.; Fu, Y.; Liu, L. Org. Lett. 2011, 13, 4240.
doi: 10.1021/ol201750s pmid: 21786835 |
|
(g) Han, G.; Xu, H.; Hou, W. Chin. J. Org. Chem. 2022, 41, 391. (in Chinese)
pmid: 21786835 |
|
(韩高旭, 许洪涛, 侯卫, 有机化学, 2022, 41, 391.)
pmid: 21786835 |
|
[4] |
(a) Lee, D.-H.; Kwon, K.-H.; Yi, C. S. Science 2011, 333, 1613.
doi: 10.1126/science.1208839 |
(b) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394.
doi: 10.1021/ar7001123 |
|
(c) Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551.
doi: 10.1021/cr800278z |
|
(d) Zhang, S.-Y.; Zhang, F.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2011, 40, 1937.
doi: 10.1039/c0cs00063a |
|
(e) Muzart, J. Tetrahedron 2005, 61, 4179.
doi: 10.1016/j.tet.2005.02.026 |
|
(f) Detz, R. J.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2009, 6263.
|
|
(g) Emer, E.; Sinisi, R.; Capdevila, M. G.; Petruzziello, D.; Vincentiis, F. D.; Cozzi, P. G. Eur. J. Org. Chem. 2011, 4, 647.
|
|
(h) Bandini, M.; Cera, G.; Chiarucci, M. Synthesis 2012, 504.
|
|
(i) Chen, L.; Yin, X.-P.; Wang, C.-H.; Zhou, J. Org. Biomol. Chem. 2014, 12, 6033.
doi: 10.1039/C4OB00718B |
|
[5] |
(a) Watson, A. J. A.; Williams, J. M. J. Science 2010, 329, 635.
doi: 10.1126/science.1191843 pmid: 26639633 |
(b) Guillena, G.; Ramón, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611.
doi: 10.1021/cr9002159 pmid: 26639633 |
|
(c) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
doi: 10.1021/cr900202j pmid: 26639633 |
|
(d) Bähn, S.; Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.; Beller, M. ChemCatChem 2011, 3, 1853.
doi: 10.1002/cctc.201100255 pmid: 26639633 |
|
(e) Obora, Y. ACS Catal. 2014, 4, 3972.
doi: 10.1021/cs501269d pmid: 26639633 |
|
(f) Yang, Q.; Wang, Q.; Yu, Z. Chem. Soc. Rev. 2015, 44, 2305.
doi: 10.1039/c4cs00496e pmid: 26639633 |
|
(g) Huang, F.; Liu, Z.; Yu, Z. Angew. Chem. Int. Ed. 2016, 55, 862.
doi: 10.1002/anie.201507521 pmid: 26639633 |
|
(h) Fujita, K.-I.; Yamaguchi, R. Synlett 2005, 560.
pmid: 26639633 |
|
(i) Ma, X.; Su, C.; Xu, Q. N -Alkylation by hydrogen autotransfer reactions, in: Hydrogen transfer reactions: reductions and beyond, InTopics in Current Chemistry, Vol.374, Eds.: Guillena, G.; Ramón, D. J., Springer, Berlin, Heidelberg, 2016, pp. 1-74.
pmid: 26639633 |
|
(j) Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018, 118, 1410.
doi: 10.1021/acs.chemrev.7b00340 pmid: 26639633 |
|
(k) Irrgang, T.; Kempe, R. Chem. Rev. 2019, 119, 2524.
doi: 10.1021/acs.chemrev.8b00306 pmid: 26639633 |
|
[6] |
Blank, B.; Kempe, R. J. Am. Chem. Soc. 2010, 132, 924.
doi: 10.1021/ja9095413 |
[7] |
(a) Obora, Y.; Ogawa, S.; Yamamoto, N. J. Org. Chem. 2012, 77, 9429.
doi: 10.1021/jo3019347 |
(b) Chaudhari, C.; Siddiki, S. M. A. H.; Shimizu, K. Tetrahedron Lett. 2013, 54, 6490.
doi: 10.1016/j.tetlet.2013.09.077 |
|
(c) Feng, T.; Li, H.; Young, D.; Lang, J. J. Org. Chem. 2017, 82, 4113.
doi: 10.1021/acs.joc.6b03095 |
|
(d) Rana, J.; Babu, R.; Subaramanian, M.; Balaraman, E. Org. Chem. Front. 2018, 5, 3250.
doi: 10.1039/C8QO00764K |
|
(e) Vellakkaran, M.; Das, J.; Bera, S.; Banerjee, D. Chem. Commun. 2018, 54, 12369.
doi: 10.1039/C8CC06370B |
|
(f) Mishra, A.; Dwivedi, A. D.; Shee, S.; Kundu, S. Chem. Commun. 2020, 56, 249.
doi: 10.1039/C9CC08448G |
|
(g) Kabadwal, L. M.; Bera, S.; Banerjee, D. Chem. Commun. 2020, 56, 4777.
doi: 10.1039/D0CC01593H |
|
(h) Onoda, M.; Fujita, K.-I. Org. Lett. 2020, 22, 7295.
doi: 10.1021/acs.orglett.0c02635 |
|
(i) Jana, A.; Kumar, A.; Maji, B. Chem. Commun. 2021, 57, 3026.
doi: 10.1039/D1CC00181G |
|
[8] |
Although bases were essential additives in TM-catalyzed alkylation reactions, they were not considered as the catalyst for the reactions (Ref. [5-7]). We observe this point in this work.
|
[9] |
Xiao, M.; Ren, D.; Xu, L.; Li, S.-S.; Yu, L.; Xiao, J. Org. Lett. 2017, 19, 5724.
doi: 10.1021/acs.orglett.7b02294 |
[10] |
(a) Feng, S.; Liu, C.; Li, Q.; Yu, X.; Xu, Q. Chin. Chem. Lett. 2011, 22, 1021.
doi: 10.1016/j.cclet.2011.03.014 |
(b) Liu, C.; Liao, S.; Li, Q.; Feng, S.; Sun, Q.; Yu, X.; Xu, Q. J. Org. Chem. 2011, 76, 5759.
doi: 10.1021/jo200862p |
|
(c) Yu, X.; Liu, C.; Jiang, L.; Xu, Q. Org. Lett. 2011, 13, 6184.
doi: 10.1021/ol202582c |
|
(d) Li, Q.; Fan, S.; Sun, Q.; Tian, H.; Yu, X.; Xu, Q. Org. Biomol. Chem. 2012, 10, 2966.
doi: 10.1039/c1ob06743e |
|
(e) Liao, S.; Yu, K.; Li, Q.; Tian, H.; Zhang, Z.; Yu, X.; Xu, Q. Org. Biomol. Chem. 2012, 10, 2973.
doi: 10.1039/c1ob06739g |
|
(f) Yu, X.; Jiang, L.; Li, Q.; Xie, Y.; Xu, Q. Chin. J. Chem. 2012, 30, 2322.
doi: 10.1002/cjoc.201200462 |
|
(g) Xu, Q.; Li, Q. Chin. J. Org. Chem. 2013, 33, 18. (in Chinese)
doi: 10.6023/cjoc201208016 |
|
徐清, 李强, 有机化学, 2013, 33, 18.)
doi: 10.6023/cjoc201208016 |
|
[11] |
(a) Xu, Q.; Chen, J.; Tian, H.; Yuan, X.; Li, S.; Zhou, C.; Liu, J. Angew. Chem. Int. Ed. 2014, 53, 225.
doi: 10.1002/anie.201308642 |
(b) Xu, Q.; Li, Q.; Zhu, X.; Chen, J. Adv. Synth. Catal. 2013, 355, 73.
doi: 10.1002/adsc.201200881 |
|
(c) Xu, Q.; Chen, J.; Liu, Q. Adv. Synth. Catal. 2013, 355, 697.
doi: 10.1002/adsc.201200996 |
|
(d) Li, S.; Li, X.; Li, Q.; Yuan, Q.; Shi, X.; Xu, Q. Green Chem. 2015, 17, 3260.
doi: 10.1039/C4GC02542C |
|
(e) Chen, J.; Li, Y.; Li, S.; Liu, J.; Zheng, F.; Zhang, Z.; Xu, Q. Green Chem. 2017, 19, 623.
doi: 10.1039/C6GC02518H |
|
(f) Xu, Q.; Xie, H.; Chen, P.; Yu, L.; Chen, J.; Hu, X. Green Chem. 2015, 17, 2774.
doi: 10.1039/C5GC00284B |
|
(g) Xu, Q.; Xie, H.; Zhang, E.-L.; Ma, X.; Chen, J.; Yu, X.-C.; Li, H. Green Chem. 2016, 18, 3940.
doi: 10.1039/C6GC00938G |
|
(h) Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359, 1649.
doi: 10.1002/adsc.201700227 |
|
(i) Yang, Y.; Ye, Z.; Zhang, X.; Zhou, Y.; Ma, X.; Cao, H.; Bao, J.; Li, H.; Yu, L.; Xu, Q. Org. Biomol. Chem. 2017, 15, 9638.
doi: 10.1039/C7OB02461D |
|
(j) Ma, X.; Xu, Q.; Li, H.; Su, C.; Yu, L.; Zhang, X.; Cao, H.; Han, L.-B. Green Chem. 2018, 20, 3408.
doi: 10.1039/C8GC00931G |
|
(k) Ma, X.; Yu, J.; Yan, R.; Yan, M.; Xu, Q. J. Org. Chem. 2019, 84, 11294.
doi: 10.1021/acs.joc.9b01670 |
|
[12] |
(a) Shi, X.; Guo, J.; Liu, J.; Ye, M.; Xu, Q. Chem. Eur. J. 2015, 21, 9988.
doi: 10.1002/chem.201501184 pmid: 30791215 |
(b) Liu, J.; Wang, C.; Ma, X.; Shi, X.; Wang, X.; Li, H.; Xu, Q. Catal. Lett. 2016, 146, 2139.
doi: 10.1007/s10562-016-1818-2 pmid: 30791215 |
|
(c) Yao, S.; Zhou, K.; Wang, J.; Cao, H.; Yu, L.; Wu, J.; Qiu, P.; Xu, Q. Green Chem. 2017, 19, 2945.
doi: 10.1039/C7GC00977A pmid: 30791215 |
|
(d) Liu, H.; Han, F.; Li, H.; Liu, J.; Xu, Q. Org. Biomol. Chem. 2020, 18, 7079.
doi: 10.1039/D0OB01549K pmid: 30791215 |
|
(e) Wang, Q.; Lv, M.; Liu, J.; Li, Y.; Cao, H.; Zhang, X.; Xu, Q. ChemSusChem 2019, 12, 3043.
doi: 10.1002/cssc.201900265 pmid: 30791215 |
|
(f) Wang, Q.; Zhang, X.; Han, F.; Liu, J.; Xu, Q. ChemSusChem 2021, 14, 2866.
doi: 10.1002/cssc.202100703 pmid: 30791215 |
|
[13] |
For similar findings from other groups: (a) Zhang, W.; Liu, M.; Wu, H.; Ding, J.; Cheng, J;. Tetrahedron Lett. 2008, 49, 5336.
doi: 10.1016/j.tetlet.2008.06.061 |
(b) Wang, X.; Wang, D. Z. Tetrahedron 2011, 67, 3406.
doi: 10.1016/j.tet.2011.03.052 |
|
(c) Donthiri, R. R.; Patil, R. D.; Adimurthy, S. Eur. J. Org. Chem. 2012, 4457.
|
|
(d) Xu, J.; Zhuang, R.; Bao, L.; Tang, G.; Zhao, Y. Green Chem. 2012, 14, 2384.
doi: 10.1039/c2gc35714c |
|
[14] |
Xu, Q.; Li, S.; Chen, J.; Yuan, X.; Zhang, Z. A method for dehydrative C-alkylation of methyl N-heteroarenes, Chin. Patent ZL 201410723220.7 (applied: 2014.12.09; authorized, 2018.09.04).
|
[15] |
See the Supporting Information for details.
|
[16] |
1H NMR analysis of commercial 2a reveals that it contains ca. 0.82% PhCHO,[15] which may catalyze the reaction in some extent according to our previous findings.[10b-10e]
|
[17] |
This is most possibly becaue the semiconductor grade KOH kept under anhydrous conditons is purer and contains less water, thus being more effective than the AR grade KOH in the reaction.
|
[18] |
(a) Cha, J. S. Org. Pro. Res. Dev. 2006, 10, 1032.
doi: 10.1021/op068002c |
(b) de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 1007.
|
|
[19] |
The observed only moderate yield of 5b may be due to its side reactions (such as the Cannizzaro reaction) in the presence of a strong base at heating.
|
[20] |
(a) Pascal, L.; Eynde, J. J. V.; Haverbeke, Y. V.; Dubois, P. Lett. Org. Chem. 2004, 1, 112.
doi: 10.2174/1570178043488527 |
(b) Eynde, J. J. V.; Pascal, L.; Haverbeke, Y. V.; Dubois, P. Synth. Commun. 2001, 31, 3167.
doi: 10.1081/SCC-100105893 |
|
(c) Jaung, J.-y.; Matsuoka, M.; Fukunishi, K. Dyes Pigm. 1996, 31, 141.
doi: 10.1016/0143-7208(95)00096-8 |
|
[21] |
Considerable amounts of PhCH2OH (2a), one of the Cannizzaro products, was observed by GC-MS analysis of the reaction mixture.[15] Thus, most likely, the Cannizzaro side-reaction and neutralization of KOH by in situ generated PhCOOH, the other Cannizzaro product, led to ineffective reaction and low yield of 4a.
|
[22] |
(a) Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723.
doi: 10.1021/cr020080k |
(b) Bradshaw, J. S.; Izatt, R. M. Acc. Chem. Res. 1997, 30, 338.
doi: 10.1021/ar950211m |
|
(c) An, H.; Bradshaw, J. S.; Izatt, R. M. Chem. Rev. 1992, 92, 543.
doi: 10.1021/cr00012a004 |
|
[23] |
Tan, Z.; Jiang, H.; Zhang, M. Chem. Commun. 2016, 52, 9359.
doi: 10.1039/C6CC03996K |
[24] |
Mishra, A.; Dwivedi, A. D.; Shee, S.; Kundu, S. Chem. Commun. 2020, 56, 249.
doi: 10.1039/C9CC08448G |
[25] |
Mrsic, N.; Jerphagnon, T.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Adv. Synth. Catal. 2009, 351, 2549-2552.
doi: 10.1002/adsc.200900522 |
[26] |
Daw, P.; Kumar, A.; Espinosa-Jalapa, N. A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catal. 2018, 8, 7734.
doi: 10.1021/acscatal.8b02208 |
[27] |
Guo, B.; Li, H.-X.; Zhang, S.-Q.; Young, D. J.; Lang, J.-P. ChemCatChem 2018, 10, 5627.
doi: 10.1002/cctc.201801525 |
[28] |
Zeng, Y.-H.; Qian, B.; Li, Y.-J.; Bao, H.-l. Synthesis 2018, 50, 3250.
doi: 10.1055/s-0037-1609965 |
[29] |
Feng, T.-Y.; Li, H.-X.; Young, D. J.; Lang, J.-P. J. Org. Chem. 2017, 82, 4113.
doi: 10.1021/acs.joc.6b03095 |
[30] |
Jana, A.; Kumar, A.; Maji, B. Chem. Commun. 2021, 57, 3026.
doi: 10.1039/D1CC00181G |
[31] |
Jerzy, C.; Teresa, G.-J. Rocz. Chem. 1969, 43, 1037.
|
[32] |
Duke III, C. B.; Letterman, R. G.; Johnson, J. O.; Barr, J. W.; Hu, S.; Ross II, C. R.; Webster, C. E.; Burkey, T. J. Organometallics 2014, 33, 485.
doi: 10.1021/om400928k |
[33] |
Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martín-Matute, B. J. Am. Chem. Soc. 2001, 123, 5358.
pmid: 11457403 |
[34] |
Nishikawa, S.; Hayashi, E.-I.; Kumazawa, Z.; Kashimura, N. Agric. Biol. Chem. 1989, 53, 3387.
|
[35] |
Yang, X.-L.; Xu, C.-M.; Lin, S.-M.; Chen, J.-X.; Ding, J.-C.; Wu, H.-Y.; Su, W.-K. J. Braz. Chem. Soc. 2010, 21, 37.
doi: 10.1590/S0103-50532010000100007 |
[36] |
Nakamura, Y.; Azuma, A.; Kato, S.; Oe, Y.; Ohta, T. Chem. Lett. 2019, 48, 1192.
doi: 10.1246/cl.190488 |
[1] | Jie Liu, Feng Han, Shuangyan Li, Tianyu Chen, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic Olefination of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 573-583. |
[2] | Xiao Song, Jing Qing, Jun Li, Xuelei Jia, Fusong Wu, Junrong Huang, Jian Jin, Hengzhi You. Copper-Catalyzed Asymmetric Allyl Alkylation Using Grignard Reagents under Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3174-3179. |
[3] | Chun-Xia Cheng, Lu-Ping Wu, Feng Sha, Xin-Yan Wu. Enantioselective Vinylogous Allylic Alkylation of Coumarins with Morita-Baylis-Hillman Carbonates Catalyzed by Chiral Phosphine-Amide [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3188-3195. |
[4] | Boyu Yan, Jieliang Wu, Jinfei Deng, Dan Chen, Xiushen Ye, Qiuli Yao. Recent Progress in Light-Driven Direct Dehydroxylation and Derivation of Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3055-3066. |
[5] | Yingke Feng, He Wang, Mengxing Cui, Ran Sun, Xin Wang, Yang Chen, Lei Li. Visible-Light-Induced Difluoroalkylated Cyclization of Novel Functionalized Aromatic Isocyanides [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2913-2925. |
[6] | Xiaoyu Zhang, Xinyan Li, Bing Cui, Zhihui Shao, Mingqin Zhao. Design, Synthesis and Antioxidant Activity of Tetrahydro-β-carbolines [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2885-2894. |
[7] | Zhongrong Xu, Jieping Wan, Yunyun Liu. Transition Metal-Free C—H Thiocyanation and Selenocyanation Based on Thermochemical, Photocatalytic and Electrochemical Process [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2425-2446. |
[8] | Yanhua Gao, Yinpan Zhang, Yan Zhang, Tao Song, Yong Yang. Visible-Light-Induced Aerobic Oxidation of Alcohols over Surface Oxygen Vacancies-Enriched Nb2O5 [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2572-2579. |
[9] | Fen Huang, Weiwei Luo, Jun Zhou. Research Progress of Polychloroalkylation Based on C—H Bond Cleavage [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2368-2390. |
[10] | Jiao Qin, Jie Chen, Yan Su. Synthesis of 2,2,6,6-Tetramethylpiperidin-1-yl-2-(2-cyanophenyl)-acetate by Transition Metal-Free Radical Cleavage Reaction from α-Bromoindanone [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2171-2177. |
[11] | Li Sun, Guoxin Song, Jiale Han, Jiyu Li, Yue Zhao, Luhua Yang, Feng Zhang, Kun Zhao, Biming Mao. Electrochemical Allylic Alkylation of Morita-Baylis-Hillman Adducts and N-Hydroxyphthalimide Esters towards C(sp3)—C(sp3) Bond Formation [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1574-1583. |
[12] | Jinxiao Zhao, Tonghui Wei, Sen Ke, Yi Li. Visible Light-Catalyzed Synthesis of Difluoroalkylated Polycyclic Indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1102-1114. |
[13] | Jiantao Zhang, Yawen Deng, Nuolin Mo, Lianfen Chen. Advances in Radical Mediated 1,2-Aryl Migration Reactions of α,α-Diarylallyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 426-435. |
[14] | Jing Sun, Mengmeng Zhang, Xiaolong Guo, Qi Wang, Luyao Wang. Synthesis of Diaryl Selenium Compounds without Transition-Metal Catalyst [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4251-4260. |
[15] | Tiantian Liu, Xinhong Duan. Recent Progress in the Construction of Chiral 3-Substituted Indoles by Asymmetric Friedel-Crafts Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3695-3712. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||