Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (11): 3549-3561.DOI: 10.6023/cjoc202204063 Previous Articles     Next Articles

REVIEWS

多硫芳烃化合物的合成及聚集诱导磷光性质研究进展

路云乐a,b, 王彦杰b, 朱亮亮b, 岳兵兵a,*()   

  1. a上海理工大学材料与化学学院 上海 200093
    b复旦大学高分子科学系 聚合物分子工程国家重点实验室 上海 200438
  • 收稿日期:2022-04-25 修回日期:2022-06-22 发布日期:2022-07-20
  • 通讯作者: 岳兵兵
  • 基金资助:
    上海市青年科技英才扬帆计划(20YF1432400); 国家自然科学基金(22105128)

Progress in Synthesis and Aggregation-Induced Phosphorescence of Persulfurated Arene Compounds

Yunle Lua,b, Yanjie Wangb, Liangliang Zhub, Bingbing Yuea()   

  1. aSchool of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093
    bState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438
  • Received:2022-04-25 Revised:2022-06-22 Published:2022-07-20
  • Contact: Bingbing Yue
  • Supported by:
    Shanghai Sailing Program(20YF1432400); National Natural Science Foundation of China(22105128)

Aggregation-induced emission (AIE) has received extensive attention in the field of optical materials since its discovery. Organic phosphorescence with high efficiency and long lifetime exhibits excellent luminescent properties and high flexibility of modification, which is an important development direction of organic light-emitting materials in the future. Persulfurated arenes as a typical class of aggregation-induced phosphorescence (AIP) materials possess highly twistable molecular structures and abundant modification sites. Therefore, a number of luminescent systems (such as solution state, thin film state, crystalline state, etc.) based on these compounds have been developed. At the same time, persulfurated arene exhibit a unique molecular conformation transition in the excited state, which not only provides a theoretical basis for the regulation of molecular self-assembly morphology and luminescence properties under in situ photocontrol, but also builds a fabulous platform for developing abundant luminescence systems. This paper aims to summarize the aggregation induced phosphorescence properties of different series of persulfurated arenes under various regulation modes. Combined with the research practice of our research group in this field, the AIP properties of persulfurated arenes in recent years are reviewed. The possible problems in the current research are briefly prospected, hoping to provide some reference and thinking for the future development direction of AIP materials.

Key words: aggregation induced emission, persulfurated arenes, phosphorescence, light control, stimulus responsiveness