Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (6): 2163-2170.DOI: 10.6023/cjoc202210029 Previous Articles     Next Articles

含直链烷烃的胍基腙衍生物的合成及其抗菌活性评价

宋明霞a, 朱洋女a, 王世帅c, 黄玉萍d, 邓先清a,*(), 黄玉珊b,*()   

  1. a 井冈山大学医学部 江西吉安 343009
    b 赣南医学院第一附属医院 循证医学与临床研究中心 江西赣州 341000
    c 赣南医学院 心脑血管疾病防治教育部重点实验室 江西赣州 341000
    d 赣南医学院 生物化学与分子生物学系 江西赣州 341000
  • 收稿日期:2022-10-24 修回日期:2022-12-05 发布日期:2023-01-05
  • 基金资助:
    国家自然科学基金(81560561); 江西省自然科学基金(20224ACB206044)

Synthesis and Antibacterial Activity Evaluation of Guanidine Hydrazone Derivatives Containing Linear Alkanes

Mingxia Songa, Yangnv Zhua, Shishuai Wangc, Yuping Huangd, Xianqing Denga,*(), Yushan Huangb,*()   

  1. a School of Medicine, Jinggangshan University, Ji'an, Jiangxi 343009
    b Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000
    c Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases,Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000
    d Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi 341000
  • Received:2022-10-24 Revised:2022-12-05 Published:2023-01-05
  • Contact: E-mail: dengxinqing1121@126.com;3218680@qq.com
  • Supported by:
    National Natural Science Foundation of China(81560561); Natural Science Foundation of Jiangxi Province(20224ACB206044)

The rise of antibiotic resistance and the declining discovery of new antibiotics have created a global health crisis. To obtain effective antibacterial agents and relieve bacterial resistance, a series of novel guanidine hydrazones containing linear alkanes were designed and synthesized. The antimicrobial activities of these compounds were evaluated against five gram-positive strains, four gram-negative strains and four multidrug-resistant strains. All of the targets except (E)-2-hexyli- denehydrazine-1-carboximidamide (1a) exhibited a different degree of antibacterial properties with minimum inhibitory concentration (MIC) in 0.5~64 μg/mL. Among them, (E)-2-dodecylidenehydrazine-1-carboximidamide (1d), (E)-2-tetradecyli- denehydrazine-1-carbox-imidamide (1e), (E)-2-(4-(heptyloxy)benzylidene)hydrazine-1-carboximidamide (2d) and (E)-2-(4- (octyloxy)benzylidene)hydrazine-1-carbox-imidamide (2e) showed equivalent or better antibacterial activity than penicillin and norfloxacin against strains 33693, 29212, 63501, 10104 and 43300. Excellent bactericidal properties of 2d and low frequency of bacteria developing resistance toward 2d were established. The cytotoxicity evaluation showed that the target compounds had certain cytotoxicity, but no cytotoxicity was found under the concentration of antibacterial activity. Molecular docking of 2d with LpxC was performed, which demonstrated that 2d has a forceful binding with LpxC. These findings strongly support the assumption that guanidine hydrazone coupled with linear alkane is a potential skeleton to develop new antimicrobial agents.

Key words: guanidine hydrazone, antimicrobial, linear alkane, resistance