Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (3): 1115-1123.DOI: 10.6023/cjoc202210033 Previous Articles Next Articles
Special Issue: 有机氟化学虚拟合辑; 中国女科学家专辑
ARTICLES
收稿日期:
2022-10-27
修回日期:
2022-12-30
发布日期:
2023-02-06
通讯作者:
李清, 董琳
基金资助:
Chengfu Zenga, Yuan Heb, Qing Lia(), Lin Dongb()
Received:
2022-10-27
Revised:
2022-12-30
Published:
2023-02-06
Contact:
Qing Li, Lin Dong
Supported by:
Share
Chengfu Zeng, Yuan He, Qing Li, Lin Dong. Ir(III)-Catalyzed Novel Three-Component Cascade Trifluoroethoxylation and One-Pot Method to Construct Complex Amide Compounds[J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1115-1123.
Entry | Oxidant | Ag/Additive | Solvent | Yieldb/% | |
---|---|---|---|---|---|
3aa | 3aa' | ||||
1 | AgOAc | AgSbF6 | TFE | ND | ND |
2 | Cu(OAc)2•H2O | AgSbF6 | TFE | ND | ND |
3 | Cu(acac)2 | AgSbF6 | TFE | Trace | ND |
4 | Cu(OTf)2 | AgSbF6 | TFE | 37 | Trace |
5 | Cu(OTf)2 | AgNTf2 | TFE | 40 | Trace |
6 | Cu(OTf)2 | AgBF4 | TFE | 44 | Trace |
7 | Cu(OTf)2 | CH3SO3Ag | TFE | 38 | Trace |
8 | Cu(OTf)2 | AgOTf | TFE | 47 | Trace |
9c | Cu(OTf)2 | AgOTf | TFE | 72 | Trace |
10c | Cu(OTf)2 | AgOTf | MeOH | ND | ND |
11c | Cu(OTf)2 | AgOTf | EtOH | ND | ND |
12c | Cu(OTf)2 | AgOTf | DCE | ND | ND |
13c | Cu(OTf)2 | AgOTf | CCl3CH2OH | ND | ND |
14c | Cu(OTf)2 | AgOTf/PivOH | TFE | 66 | Trace |
15c | Cu(OTf)2 | AgOTf/NaOAc | TFE | Trace | ND |
16c | Cu(OTf)2 | AgOTf/Ag2O | TFE | 40 | Trace |
17c,d | Cu(OTf)2 | AgOTf/CuO | TFE | 74 | Trace |
18c,e | Cu(OTf)2 | AgOTf/CuO | TFE | 35 | Trace |
19f | — | AgNTf2/1-AdCOOH | TFE | ND | 79 |
Entry | Oxidant | Ag/Additive | Solvent | Yieldb/% | |
---|---|---|---|---|---|
3aa | 3aa' | ||||
1 | AgOAc | AgSbF6 | TFE | ND | ND |
2 | Cu(OAc)2•H2O | AgSbF6 | TFE | ND | ND |
3 | Cu(acac)2 | AgSbF6 | TFE | Trace | ND |
4 | Cu(OTf)2 | AgSbF6 | TFE | 37 | Trace |
5 | Cu(OTf)2 | AgNTf2 | TFE | 40 | Trace |
6 | Cu(OTf)2 | AgBF4 | TFE | 44 | Trace |
7 | Cu(OTf)2 | CH3SO3Ag | TFE | 38 | Trace |
8 | Cu(OTf)2 | AgOTf | TFE | 47 | Trace |
9c | Cu(OTf)2 | AgOTf | TFE | 72 | Trace |
10c | Cu(OTf)2 | AgOTf | MeOH | ND | ND |
11c | Cu(OTf)2 | AgOTf | EtOH | ND | ND |
12c | Cu(OTf)2 | AgOTf | DCE | ND | ND |
13c | Cu(OTf)2 | AgOTf | CCl3CH2OH | ND | ND |
14c | Cu(OTf)2 | AgOTf/PivOH | TFE | 66 | Trace |
15c | Cu(OTf)2 | AgOTf/NaOAc | TFE | Trace | ND |
16c | Cu(OTf)2 | AgOTf/Ag2O | TFE | 40 | Trace |
17c,d | Cu(OTf)2 | AgOTf/CuO | TFE | 74 | Trace |
18c,e | Cu(OTf)2 | AgOTf/CuO | TFE | 35 | Trace |
19f | — | AgNTf2/1-AdCOOH | TFE | ND | 79 |
[1] |
(a) Christie, R. J.; Fleming, R.; Bezabeh, B.; Woods, R.; Mao, S.; Harper, J.; Joseph, A.; Wang, Q.; Xu, Z. Q.; Wu, H.; Gao, C.; Dimasi, N. J. Controlled Release 2015, 220, 660.
doi: 10.1016/j.jconrel.2015.09.032 pmid: 19338355 |
(b) Li, T.; Takeoka, S. Int. J. Nanomed. 2013, 8, 3855.
pmid: 19338355 |
|
(c) Gaisina, I. N.; Gallier, F.; Ougolkov, A. V.; Kim, K. H.; Kurome, T.; Guo, S.; Holzle, D.; Luchini, D. N.; Blond, S. Y.; Billadeau, D. D.; Kozikowski, A. P. J. Med. Chem. 2009, 52, 1853.
doi: 10.1021/jm801317h pmid: 19338355 |
|
(d) Oz, Y.; Sanyal, A. Chem. Rec. 2018, 18, 570.
doi: 10.1002/tcr.v18.6 pmid: 19338355 |
|
[2] |
(a) Manoharan, R.; Jeganmohan, M. Asian J. Org. Chem. 2019, 8, 1949.
doi: 10.1002/ajoc.201900054 |
(b) Liu, S. L.; Shi, Y.; Xue, C.; Zhang, L.; Zhou, L.; Song, M. P. Eur. J. Org. Chem. 2021, 5862.
|
|
[3] |
(a) He, Q.; Yamaguchi, T.; Chatani, N. Org. Lett. 2017, 19, 4544.
doi: 10.1021/acs.orglett.7b02135 pmid: 33433216 |
(b) Tamizmani, M.; Gouranga, N.; Jeganmohan, M. ChemistrySelect 2019, 4, 2976.
doi: 10.1002/slct.v4.11 pmid: 33433216 |
|
(c) Pati, B. V.; Sagara, P. S.; Ghosh, A.; Mohanty, S. R.; Ravikumar, P. C. J. Org. Chem. 2021, 86, 6551.
doi: 10.1021/acs.joc.1c00367 pmid: 33433216 |
|
(d) Ramesh, B.; Tamizmani, M.; Jeganmohan, M. J. Org. Chem. 2019, 84, 4058.
doi: 10.1021/acs.joc.9b00051 pmid: 33433216 |
|
(e) Ghosh, S.; Khandelia, T.; Patel, B. K. Org. Lett. 2021, 23, 7370.
doi: 10.1021/acs.orglett.1c02536 pmid: 33433216 |
|
(f) Zhou, Y.; Liang, H.; Sheng, Y. G.; Wang, S. L.; Gao, Y.; Zhan, L. L.; Zheng, Z. L.; Yang, M. J.; Liang, G.; Zhou, J. M.; Deng, J.; Song, Z. Q. J. Org. Chem. 2020, 85, 9230.
doi: 10.1021/acs.joc.0c01223 pmid: 33433216 |
|
(g) Shinde, V. N.; Rangan, K.; Kumar, D.; Kumar, A. J. Org. Chem. 2021, 86, 2328.
doi: 10.1021/acs.joc.0c02467 pmid: 33433216 |
|
(h) Yakkala, P. A.; Giri, D.; Chaudhary, B.; Auti, P.; Sharma, S. Org. Chem. Front. 2019, 6, 2441.
doi: 10.1039/C9QO00538B pmid: 33433216 |
|
[4] |
(a) Lv, N. N.; Liu, Y.; Xiong, C. H.; Liu, Z. X.; Zhang, Y. H. Org. Lett. 2017, 19, 4640.
doi: 10.1021/acs.orglett.7b02266 pmid: 34190290 |
(b) Devkota, S.; Lee, H. J.; Kim, S. H.; Lee, Y. R. Adv. Synth. Catal. 2019, 361, 5587.
doi: 10.1002/adsc.v361.24 pmid: 34190290 |
|
(c) Sherikar, M. S.; Prabhu, K. R. Org. Lett. 2019, 21, 4525.
doi: 10.1021/acs.orglett.9b01412 pmid: 34190290 |
|
(d) Sharma, K.; Neog, K.; Sharmaa, A.; Gogoi, P. Org. Biomol. Chem. 2021, 19, 6256.
doi: 10.1039/d1ob00797a pmid: 34190290 |
|
(e) Laru, S.; BhattacharJee, S.; Singsardar, M.; Samanta, S.; Hajra, A. J. Org. Chem. 2021, 86, 2784.
doi: 10.1021/acs.joc.0c02745 pmid: 34190290 |
|
(f) Liu, S. L.; Ye, C.; Wang, X. Org. Biomol. Chem. 2022, 20, 4837.
doi: 10.1039/D2OB00604A pmid: 34190290 |
|
[5] |
Wan, J. P.; Gan, L.; Liu, Y. Y. Org. Biomol. Chem. 2017, 15, 9031.
doi: 10.1039/C7OB02011B |
[6] |
(a) Chen, Z.; Jin, S. N.; Jiang, W. Y.; Zhu, F. M.; Chen, Y. Q.; Zhao, Y. W. J. Org. Chem. 2020, 85, 11006.
doi: 10.1021/acs.joc.0c01303 pmid: 30229801 |
(b) Zhang, Y.; Zhu, H. Q.; Huang, Y. T.; Hu, Q.; He, Y.; Wen, Y. H.; Zhu, G. G. Org. Lett. 2019, 21, 1273.
doi: 10.1021/acs.orglett.8b04026 pmid: 30229801 |
|
(c) Hoang, G. L.; Zoll, A. J.; Ellma, J. A. Org. Lett. 2019, 21, 3886.
doi: 10.1021/acs.orglett.9b00779 pmid: 30229801 |
|
(d) Jiang, L. Q.; Jin, W. F.; Hu, W. H. ACS Catal. 2016, 6, 6146;
doi: 10.1021/acscatal.6b01946 pmid: 30229801 |
|
(e) Yang, Z.; Lin, X.; Wang, L. H.; Cui, X. L. Org. Chem. Front. 2017, 4, 2179.
doi: 10.1039/C7QO00541E pmid: 30229801 |
|
(f) Huang, J. R.; Song, Q.; Zhu, Y. Q.; Qin, L.; Qian, Z. Y.; Dong, L. Chem.-Eur. J. 2014, 20, 16882.
doi: 10.1002/chem.201404576 pmid: 30229801 |
|
(g) Yang, W.; Wang, J.; Wang, H.; Li, L.; Guan, Y.; Xu, X.; Yu, D. Org. Biomol. Chem. 2018, 16, 6865.
doi: 10.1039/c8ob01938j pmid: 30229801 |
|
[7] |
(a) Zhu, H.; Zhuang, R.; Zheng, W.; Fu, L.; Zha, Y.; Tu, L.; Chai, Y.; Zeng, L.; Zhang, C.; Zhang, J. Tetrahedron 2019, 75, 3108.
doi: 10.1016/j.tet.2019.04.054 |
(b) Lin, H.; Dong, L. Org. Lett. 2016, 18, 5524.
doi: 10.1021/acs.orglett.6b02768 |
|
(c) Mei, R.; Loup, J.; Ackermann, L. ACS Catal. 2016, 6, 793.
doi: 10.1021/acscatal.5b02661 |
|
(d) Huang, Y.; Lyu, X.; Song, H.; Wang, Q. Adv. Synth. Catal. 2019, 361, 5272.
doi: 10.1002/adsc.v361.22 |
|
(e) Zhang, G. T.; Dong, L. Asian J. Org. Chem. 2017, 6, 812;
doi: 10.1002/ajoc.v6.7 |
|
(f) Li, B.; DevaraJ, K.; Darcel, C.; Dixneuf, P. H. Green Chem. 2012, 14, 2706.
doi: 10.1039/c2gc36111f |
|
(g) He, Y.; Zheng, T.; Huang, Y. H.; Dong, L. Org. Biomol. Chem. 2021, 19, 4937.
doi: 10.1039/D1OB00507C |
|
[8] |
(a) Yang, Z.; Jie, L.; Yao, Z.; Yang, Z.; Cui, X. Adv. Synth. Catal. 2019, 361, 214.
doi: 10.1002/adsc.201801217 |
(b) Kumar, G. S.; Khot, N. P.; Kapur, M. Adv. Synth. Catal. 2019, 361, 73.
doi: 10.1002/adsc.v361.1 |
|
(c) He, Y.; Liao, X. Z.; Dong, L.; Chen, F. E. Org. Biomol. Chem. 2021, 19, 561.
doi: 10.1039/D0OB02389B |
|
[9] |
Liu, J.; Yang, Z.; Jiang, J.; Zeng, Q.; Zheng, L.; Liu, Z. Q. Org. Lett. 2021, 23, 5927.
doi: 10.1021/acs.orglett.1c02031 |
[10] |
For more details, please see the Supporting Information.
|
[11] |
(a) Jambu, S.; Sivasakthikumaran, R.; Jeganmohan, M. Org. Lett. 2019, 21, 1320.
doi: 10.1021/acs.orglett.8b04140 |
(b) Sheng, Y.; Gao, Y.; Duan, B.; Lv, M.; Chen, Y.; Yang, M.; Zhou, J.; Liang, G.; Song, Z. Adv. Synth. Catal. 2022, 364, 307.
doi: 10.1002/adsc.v364.2 |
|
(c) BanJare, S. K.; Nanda, T.; Ravikumar, P. C. Org. Lett. 2019, 21, 8138.
doi: 10.1021/acs.orglett.9b03243 |
|
(d) Peng, J.; Li, C.; Khamrakulov, M.; Wang, J.; Liu, H. Org. Lett. 2020, 22, 1535.
doi: 10.1021/acs.orglett.0c00086 |
[1] | Qiuyu Gu, Tianyu Peng, Mingcheng Bo, Yifeng Wang. Selective Mono- and Di-deuterodefluorination of Trifluoroacetamides Promoted by Boryl Radicals [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1832-1842. |
[2] | Haoyang Liu, Shuangshuang Sun, Xianli Ma, Yanyan Chen, Yanli Xu. Synthesis of Selenylated Spiro[indole-3,3'-quinoline] Derivatives via Visible-Light-Promoted Isocyanide Insertion [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2867-2876. |
[3] | Xiang Li, Yifan Zhang, Kailin Lu, Shihui Liu, Yongqiang Zhang. Aminofluorination-Based Structural Modification of Curcumol for the Construction of 3D-Shaped Natural Product Fragment Library [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2124-2133. |
[4] | Longyu Ran, Chengpan Zhang. An Overview of the Reactions with Trifluoromethyl Trifluoromethanesulfonate [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2045-2054. |
[5] | Jun Pan, Jingjing Wu, Fanhong Wu. Progress in Fluoroalkylation of Multicomponent [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 983-1001. |
[6] | Weilin Wang, Weidong Chen, Junfei Luo, Pan Xie. Recent Advances in C—H Fluorination and Amination with N-Fluorobenzenesulfonimide [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 543-552. |
[7] | Chen Qianwen, Yang Yaocheng, Wang Xia, Zhang Qian, Li Dong. Hypervalent Iodine Reagent-Mediated C(5) C-H Nucleophilic Fluorination of 8-Aminoqunolines [J]. Chinese Journal of Organic Chemistry, 2020, 40(2): 454-461. |
[8] | Li Kunyu, Bai Lu, Luan Xinjun. Pd-Catalyzed Dearomative Spirocyclization of Bromophenols via[2+2+1] Strategy [J]. Chinese Journal of Organic Chemistry, 2019, 39(8): 2211-2217. |
[9] | Zhang Huaiyuan, Tang Rongping, Shi Xingli, Xie Lin, Wu Jiawei. Recent Advances in Organic Electrochemical Synthesis and Application of Hypervalent Iodine Reagents [J]. Chin. J. Org. Chem., 2019, 39(7): 1837-1845. |
[10] | Liang Long, Liu Li-Na, Chen Xue-Qiang, Xiang Xuan, Ling Jun, Lu Zheng-Quan, Li Jing-Jing, Li Wei-Shi. Benzodithiophene/Benzothiadiazole-Based ADA-Type Optoelectronic Molecules: Influence of Fluorine Substitution [J]. Chin. J. Org. Chem., 2019, 39(1): 157-169. |
[11] | Wu Wensheng, Yuan Hang, Huang Gaokui, Jiang Chunhui, Lu Hongfei. Fluorination of β-Ketoesters and β-Ketoamides Based on PhI(OAc)2 [J]. Chin. J. Org. Chem., 2019, 39(1): 137-143. |
[12] | Liu Qingquan, Hu Xiangguo. Application of Benzylic C-H Fluorination for the Formal Synthesis of syn-α, β-Difluoro-γ-amino Acid [J]. Chin. J. Org. Chem., 2018, 38(6): 1525-1529. |
[13] | Huang Yulin, Chen Qian. Fluorination Reaction of P(Ⅲ) Compounds with the Electrophilic Fluorinating Reagent Selectfluor [J]. Chin. J. Org. Chem., 2017, 37(10): 2745-2751. |
[14] | He Jiangqi, Lou Shaojie, Xu Danqian. Recent Advances in Transition-Metal Catalyzed C—H Bond Fluorination [J]. Chin. J. Org. Chem., 2016, 36(6): 1218-1228. |
[15] | Li Qingwei, Chen Fuli, Yang Xianjin. Synthesis of Substituted N—F Benzenesulfonimides and Comparison of Their Fluorination Reactivity via Their Reactions with Silylenol Ethers [J]. Chin. J. Org. Chem., 2015, 35(12): 2604-2609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||