Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (7): 2045-2054.DOI: 10.6023/cjoc202202025 Previous Articles Next Articles
Special Issue: 有机氟化学虚拟合辑
REVIEWS
收稿日期:
2022-02-12
修回日期:
2022-03-13
发布日期:
2022-08-09
通讯作者:
张成潘
基金资助:
Received:
2022-02-12
Revised:
2022-03-13
Published:
2022-08-09
Contact:
Chengpan Zhang
Supported by:
Share
Longyu Ran, Chengpan Zhang. An Overview of the Reactions with Trifluoromethyl Trifluoromethanesulfonate[J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2045-2054.
[1] |
Selected books: (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013.
|
(b) Szabó, K. J.; Selander, N. Organofluorine Chemistry: Synthesis, Modeling, and Applications, WILEY-VCH GmbH, Weinheim, Germany, 2021.
|
|
(c) Ojima, I. Frontiers of Organofluorine Chemistry, World Scientific Publishing Europe Ltd., London WC2H 9HE, 2020.
|
|
(d) Ameduri, B.; Fomin, S. Fascinating Fluoropolymers and Their Applications, In Progress in Fluorine Science, 1st ed, Elsevier, Netherlands, 2020.
|
|
(e) Cahard, D.; Ma, J.-A. Emerging Fluorinated Motifs: Synthesis, Properties, and Applications, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2020.
|
|
[2] |
Selected reviews: (a) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
doi: 10.1039/b711844a pmid: 18197347 |
(b) Johnson, B. M.; Shu, Y.-Z.; Zhuo, X.; Meanwell, N. A. J. Med. Chem. 2020, 63, 6315.
doi: 10.1021/acs.jmedchem.9b01877 pmid: 18197347 |
|
(c) Alexandrino, D. A. M.; Mucha, A. P.; Almeida, C. M. R.; Carvalho, M. F. Crit. Rev. Biotechnol. 2021, https://doi.org/10.1080/07388551.2021.1977234.
pmid: 18197347 |
|
(d) Han, J.; Kiss, L.; Mei, H.; Remete, A. M.; Ponikvar-Svet, M.; Sedgwick, D. M.; Roman, R.; Fustero, S.; Moriwaki, H.; Soloshonok, V. A. Chem. Rev. 2021, 121, 4678.
doi: 10.1021/acs.chemrev.0c01263 pmid: 18197347 |
|
(e) Mondal, R.; Agbaria, M.; Nairoukh, Z. Chem.-Eur. J. 2021, 27, 7193.
doi: 10.1002/chem.202005425 pmid: 18197347 |
|
[3] |
Selected reviews: (a) Inoue, M.; Sumii, Y.; Shibata, N. ACS Omega 2020, 5, 10633.
doi: 10.1021/acsomega.0c00830 |
(b) Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P. K.; Bhutani, H.; Paul, A. T.; Kumar, R. J. Med. Chem. 2021, 64, 2339.
doi: 10.1021/acs.jmedchem.0c01786 |
|
(c) Zhang, M.; Li, S.; Zhang, H.; Xu, H. Eur. J. Med. Chem. 2020, 205, 112629.
doi: 10.1016/j.ejmech.2020.112629 |
|
(d) Jaye, J. A.; Sletten, E. M. Polym. Chem. 2021, 12, 6515.
doi: 10.1039/D1PY01024G |
|
[4] |
Selected reviews: (a) Pons, A.; Delion, L.; Poisson, T.; Charette, A. B.; Jubault, P. Acc. Chem. Res. 2021, 54, 2969.
doi: 10.1021/acs.accounts.1c00261 pmid: 11848810 |
(b) Xiao, P.; Pannecoucke, X.; Bouillon, J.-P.; Couve-Bonnaire, S. Chem. Soc. Rev. 2021, 50, 6094.
doi: 10.1039/d1cs00216c pmid: 11848810 |
|
(c) Aggarwal, T.; Sushmita; Verma, A. K. Org. Chem. Front. 2021, 8, 6452.
doi: 10.1039/D1QO00952D pmid: 11848810 |
|
(d) Varga, B.; Csenki, J. T.; Tóth, B. L.; Béke, F.; Novák, Z.; Kotschy, A. Synthesis 2021, 53, 4313.
doi: 10.1055/a-1538-8344 pmid: 11848810 |
|
(e) Wang, S.-M.; Han, J.-B.; Zhang, C.-P.; Qin, H.-L.; Xiao, J.-C. Tetrahedron 2015, 71, 7949.
doi: 10.1016/j.tet.2015.06.056 pmid: 11848810 |
|
(f) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
doi: 10.1021/cr500223h pmid: 11848810 |
|
(g) Umemoto, T. Chem. Rev. 1996, 96, 1757.
pmid: 11848810 |
|
(h) Yang, J.; Zhao, H.-W.; He, J.; Zhang, C.-P. Catalysts 2018, 8, 23.
doi: 10.3390/catal8010023 pmid: 11848810 |
|
[5] |
Taylor, S. L.; Martin, J. C. J. Org. Chem. 1987, 52, 4147.
doi: 10.1021/jo00228a001 |
[6] |
Kobayashi, Y.; Yoshida, T.; Kumadaski, I. Tetrahedron Lett. 1979, 40, 3865.
|
[7] |
Noftle, R. E.; Cady, G. H. Inorg. Chem. 1965, 4, 1010.
doi: 10.1021/ic50029a019 |
[8] |
(a) Olah, G. A.; Ohayama, T. Synthesis 1976, 319.
|
(b) Noftle, R. E. Inorg. Nucl. Chem. Lett. 1980, 16, 195.
doi: 10.1016/0020-1650(80)80120-6 |
|
[9] |
Engelbrecht, V. A.; Tschager, E. Z. Anorg. Allg. Chem. 1977, 433, 19.
doi: 10.1002/zaac.19774330103 |
[10] |
Katsuhara, Y.; DesMarteau, D. D. J. Am. Chem. Soc. 1980, 102, 2681.
doi: 10.1021/ja00528a027 |
[11] |
(a) Oudrhiri-Hassani, M.; Germain, A.; Brunei, D.; Commeyras, A. Tetrahedron Lett. 1981, 22, 65.
doi: 10.1016/0040-4039(81)80042-1 |
(b) Oudrhiri-Hassani, M.; Brunel, D.; Germain, A.; Commeyras, A. J. Fluorine Chem. 1984, 25, 219.
doi: 10.1016/S0022-1139(00)80951-3 |
|
[12] |
Song, H.-X.; Tian, Z.-Y.; Xiao, J.-C.; Zhang, C.-P. Chem.-Eur. J. 2020, 26, 16261.
doi: 10.1002/chem.202003756 |
[13] |
(a) Lin, J.-H.; Ji, Y.-L.; Xiao, J.-C. Curr. Org. Chem. 2015, 19, 1541.
doi: 10.2174/1385272819666150520230727 |
(b) Tlili, A.; Toulgoat, F.; Billard, T. Angew. Chem., Int. Ed. 2016, 55, 11726.
doi: 10.1002/anie.201603697 |
|
(c) Lee, K. N.; Lee, J. W.; Ngai, M.-Y. Synlett 2016, 27, 313.
doi: 10.1055/s-0035-1560516 |
|
(d) Besset, T.; Jubault, P.; Pannecoucke, X.; Poisson, T. Org. Chem. Front. 2016, 3, 1004.
doi: 10.1039/C6QO00164E |
|
(e) Lee, K. N.; Lee, J. W.; Ngai, M.-Y. Tetrahedron 2018, 74, 7127.
doi: 10.1016/j.tet.2018.09.020 |
|
(f) Lee, J. W.; Lee, K. N.; Ngai, M.-Y. Angew. Chem., Int. Ed. 2019, 58, 11171.
doi: 10.1002/anie.201902243 |
|
(g) Zhang, X.; Tang, P. Sci. China: Chem. 2019, 62, 525.
|
|
(h) Jiang, X.; Tang, P. Chin. J. Chem. 2021, 39, 255.
doi: 10.1002/cjoc.202000465 |
|
(i) Wang, Q.; Zhang, X.; Sorochinsky, A. E.; Butler, G.; Han, J.; Soloshonok, V. A. Symmetry 2021, 13, 2380.
doi: 10.3390/sym13122380 |
|
[14] |
(a) Umemoto, T.; Adachi, K.; Ishihara, S. J. Org. Chem. 2007, 72, 6905.
pmid: 17676906 |
(b) Koller, R.; Stanek, K.; Stolz, D.; Aardoom, R.; Niedermann, K.; Togni, A. Angew. Chem., Int. Ed. 2009, 48, 4332.
doi: 10.1002/anie.200900974 pmid: 17676906 |
|
(c) Koller, R.; Huchet, Q.; Battaglia, P.; Welch, J. M.; Togni, A. Chem. Commun. 2009, 5993.
pmid: 17676906 |
|
(d) Liang, A.; Han, S.; Liu, Z.; Wang, L.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Chem.-Eur. J. 2016, 22, 5102.
doi: 10.1002/chem.201505181 pmid: 17676906 |
|
(e) Hojczyk, K. N.; Feng, P.; Zhan, C.; Ngai, M.-Y. Angew. Chem., Int. Ed. 2014, 53, 14559.
doi: 10.1002/anie.201409375 pmid: 17676906 |
|
(f) Feng, P.; Lee, K. N.; Lee, J. W.; Zhan, C.; Ngai, M.-Y. Chem. Sci. 2016, 7, 424.
doi: 10.1039/C5SC02983J pmid: 17676906 |
|
(g) Liu, J.-B.; Chen, C.; Chu, L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2015, 54, 11839.
doi: 10.1002/anie.201506329 pmid: 17676906 |
|
(h) Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 5048.
doi: 10.1021/acs.orglett.5b02522 pmid: 17676906 |
|
(i) Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2022, 61, e202114048.
pmid: 17676906 |
|
[15] |
(a) Zhou, M.; Ni, C.; He, Z.; Hu, J. Org. Lett. 2016, 18, 3754.
doi: 10.1021/acs.orglett.6b01779 pmid: 27560791 |
(b) Zhang, Q.-W.; Brusoe, A. T.; Mascitti, V.; Hesp, K. D.; Blakemore, D. C.; Kohrt, J. T.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 9758.
doi: 10.1002/anie.201604793 pmid: 27560791 |
|
(c) Chatalova-Sazepin, C.; Binayeva, M.; Epifanov, M.; Zhang, W.; Foth, P.; Amador, C.; Jagdeo, M.; Boswell, B. R.; Sammis, G. M. Org. Lett. 2016, 18, 4570.
doi: 10.1021/acs.orglett.6b02208 pmid: 27560791 |
|
[16] |
(a) Allison, J. A. C.; Cady, G. H. J. Am. Chem. Soc. 1959, 81, 1089.
doi: 10.1021/ja01514a018 |
(b) Venturini, F.; Navarrini, W.; Famulari, A.; Sansotera, M.; Dardani, P.; Tortelli, V. J. Fluorine Chem. 2012, 140, 43.
doi: 10.1016/j.jfluchem.2012.04.008 |
|
(c) Johri, K. K.; DesMarteau, D. D. J. Org. Chem. 1983, 48, 242.
doi: 10.1021/jo00150a019 |
|
(d) Navarrini, W.; Venturini, F.; Sansotera, M.; Ursini, M.; Metrangolo, P.; Resnati, G.; Galimberti, M.; Barchiesi, E.; Dardani, P. J. Fluorine Chem. 2008, 129, 680.
doi: 10.1016/j.jfluchem.2008.05.018 |
|
(e) Hesse, R. H. Trifluoromethyl Hypofluorite, e-EROS Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd., 2001.
|
|
[17] |
(a) Zheng, W.; Morales-Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai, M.-Y. Angew. Chem., Int. Ed. 2018, 57, 9645.
doi: 10.1002/anie.201800598 |
(b) Zheng, W.; Lee, J. W.; Morales-Rivera, C. A.; Liu, P.; Ngai, M.-Y. Angew. Chem., Int. Ed. 2018, 57, 13795.
doi: 10.1002/anie.201808495 |
|
(c) Lee, J. W.; Lim, S.; Maienshein, D. N.; Liu, P.; Ngai, M.-Y. Angew. Chem., Int. Ed. 2020, 59, 21475.
doi: 10.1002/anie.202009490 |
|
(d) Nyuchev, A. V.; Wan, T.; Cendón, B.; Sambiagio, C.; Struijs, J. J. C.; Ho, M.; Gulías, M.; Wang, Y.; Noël, T. Beilstein J. Org. Chem. 2020, 16, 1305.
doi: 10.3762/bjoc.16.111 |
|
(e) Duhail, T.; Bortolato, T.; Mateos, J.; Anselmi, E.; Jelier, B.; Togni, A.; Magnier, E.; Dagousset, G.; Dell’Amico, L. Org. Lett. 2021, 23, 7088.
doi: 10.1021/acs.orglett.1c02494 |
|
(f) Jelier, B. J.; Tripet, P. F.; Pietrasiak, E.; Franzoni, I.; Jeschke, G.; Togni, A. Angew. Chem., Int. Ed. 2018, 57, 13784.
doi: 10.1002/anie.201806296 |
|
(g) Dix, S.; Golz, P.; Schmid, J. R.; Riedel, S.; Hopkinson, M. N. Chem.-Eur. J. 2021, 27, 11554.
doi: 10.1002/chem.202101621 |
|
[18] |
Billard, T. Methanesulfonic Acid, 1,1,1-Trifluoro-, Trifluoromethyl Ester, e-EROS Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd., 2016, pp. 1-3.
|
[19] |
Lu, Z.; Kumon, T.; Hammond, G. B.; Umemoto, T. Angew. Chem., Int. Ed. 2021, 60, 16171.
doi: 10.1002/anie.202104975 |
[20] |
(a) Marrec, O.; Billard, T.; Vors, J.-P.; Pazenok, S.; Langlois, B. R. Adv. Synth. Catal. 2010, 352, 2831.
doi: 10.1002/adsc.201000488 |
(b) Bonnefoy, C.; Chefdeville, E.; Panosian, A.; Hanquet, G.; Leroux, F. R.; Toulgoat, F.; Billard, T. Chem.-Eur. J. 2021, 27, 15986.
doi: 10.1002/chem.202102809 |
|
(c) Duran-Camacho, G.; Ferguson, D. M.; Kampf, J. W.; Bland, D. C.; Sanford, M. S. Org. Lett. 2021, 23, 5138.
doi: 10.1021/acs.orglett.1c01664 |
|
[21] |
(a) Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P. Nat. Chem. 2017, 9, 546.
doi: 10.1038/nchem.2711 |
(b) Jiang, X.; Deng, Z.; Tang, P. Angew. Chem., Int. Ed. 2018, 57, 292.
doi: 10.1002/anie.201711050 |
|
(c) Yang, H.; Wang, F.; Jiang, X.; Zhou, Y.; Xu, X.; Tang, P. Angew. Chem., Int. Ed. 2018, 57, 13266.
doi: 10.1002/anie.201807144 |
|
(d) Liu, J.; Wei, Y.; Tang, P. J. Am. Chem. Soc. 2018, 140, 15194.
doi: 10.1021/jacs.8b10298 |
|
(e) Wang, F.; Xu, P.; Cong, F.; Tang, P. Chem. Sci. 2018, 9, 8836.
doi: 10.1039/C8SC03730B |
|
(f) Cong, F.; Wei, Y.; Tang, P. Chem. Commun. 2018, 54, 4473.
doi: 10.1039/C8CC01096J |
|
(g) Yang, S.; Chen, M.; Tang, P. Angew. Chem., Int. Ed. 2019, 58, 7840.
doi: 10.1002/anie.201901447 |
|
(h) Huang, Q.; Tang, P. J. Org. Chem. 2020, 85, 2512.
doi: 10.1021/acs.joc.9b03206 |
|
(i) Jiang, X.; Tang, P. Org. Lett. 2020, 22, 5135.
doi: 10.1021/acs.orglett.0c01741 |
|
(j) Deng, Z.; Zhao, M.; Wang, F.; Tang, P. Nat. Commun. 2020, 11, 2569.
doi: 10.1038/s41467-020-16451-x |
|
(k) Wang, F.; Guo, Y.; Zhang, Y.; Tang, P. ACS Catal. 2021, 11, 3218.
doi: 10.1021/acscatal.1c00090 |
|
(l) Xin, J.; Deng, X.; Tang, P. Org. Lett. 2022, 24, 881.
doi: 10.1021/acs.orglett.1c04226 |
|
[22] |
Li, Y.; Yang, Y.; Xin, J.; Tang, P. Nat. Commun. 2020, 11, 755.
doi: 10.1038/s41467-020-14598-1 pmid: 32029731 |
[23] |
Zhou, M.; Ni, C.; Zeng, Y.; Hu, J. J. Am. Chem. Soc. 2018, 140, 6801.
doi: 10.1021/jacs.8b04000 pmid: 29787259 |
[24] |
Kolomeitsev, A. A.; Vorobyev, M.; Gillandt, H. Tetrahedron Lett. 2008, 49, 449.
doi: 10.1016/j.tetlet.2007.11.105 |
[25] |
(a) Marrec, O.; Billard, T.; Vors, J.-P.; Pazenok, S.; Langlois, B. R. J. Fluorine Chem. 2010, 131, 200.
doi: 10.1016/j.jfluchem.2009.11.006 |
(b) Sokolenko, T. M.; Davydova, Y. A.; Yagupolskii, Y. L. J. Fluorine Chem. 2012, 136, 20.
doi: 10.1016/j.jfluchem.2012.01.005 |
|
[26] |
Barbion, J.; Pazenok, S.; Vors, J.-P.; Langlois, B. R.; Billard, T. Org. Proc. Res. Dev. 2014, 18, 1037.
|
[27] |
Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308.
doi: 10.1021/ja204861a |
[28] |
Zhang, C.-P.; Vicic, D. A. Organometallics 2012, 31, 7812.
doi: 10.1021/om3002747 |
[29] |
Chen, S.; Huang, Y.; Fang, X.; Li, H.; Zhang, Z.; Horb, T. S. A.; Weng, Z. Dalton Trans. 2015, 44, 19682.
doi: 10.1039/C5DT02078F |
[30] |
Chen, D.; Lu, L.; Shen, Q. Org. Chem. Front. 2019, 6, 1801.
doi: 10.1039/C9QO00278B |
[31] |
(a) Chen, C.-H.; Chen, P.-H.; Liu, G.-S. J. Am. Chem. Soc. 2015, 137, 15648.
doi: 10.1021/jacs.5b10971 |
(b) Chen, C.-H.; Pfluger, P. M.; Chen, P.-H.; Liu, G.-S. Angew. Chem., Int. Ed. 2019, 58, 2392.
doi: 10.1002/anie.201813591 |
|
(c) Chen, C.-H.; Hou, C.-Q.; Chen, P.-H.; Liu, G.-S. Chin. J. Chem. 2020, 38, 346.
doi: 10.1002/cjoc.201900516 |
|
(d) Qi, X.-X.; Chen, P.-H.; Liu, G.-S. Angew. Chem., Int. Ed. 2017, 56, 9517.
doi: 10.1002/anie.201703841 |
|
(e) Chen, C.-H.; Luo, Y.-X.; Fu, L.; Chen, P.-H.; Lan, Y.; Liu, G.-S. J. Am. Chem. Soc. 2018, 140, 1207.
doi: 10.1021/jacs.7b11470 |
|
[32] |
Zha, G.-F.; Han, J.-B.; Hu, X.-Q.; Qin, H.-L.; Fang, W.-Y.; Zhang, C.-P. Chem. Commun. 2016, 52, 7458.
doi: 10.1039/C6CC03040H |
[33] |
Zhang, Q.-W.; Hartwig, J. F. Chem. Commun. 2018, 54, 10124.
doi: 10.1039/C8CC05084H |
[34] |
Zhang, W.; Chen, J.; Lin, J.-H.; Xiao, J.-C.; Gu, Y.-C. iScience 2018, 5, 110.
doi: S2589-0042(18)30092-0 pmid: 30240641 |
[35] |
Yang, Y.-M.; Yao, J.-F.; Yan, W.; Luo, Z.; Tang, Z.-Y. Org. Lett. 2019, 21, 8003.
doi: 10.1021/acs.orglett.9b03000 |
[36] |
(a) Saiter, J.; Guérin, T.; Donnard, M.; Panossian, A.; Hanquet, G.; Leroux, F. R. Eur. J. Org. Chem. 2021, 3139.
|
(b) Farnham, W. B.; Smart, B. E.; Middleton, W. J.; Calabrese, J. C.; Dixon, D. A. J. Am. Chem. Soc. 1985, 107, 4565.
doi: 10.1021/ja00301a043 |
|
(c) Trainor, G. L. J. Carbohydr. Chem. 1985, 4, 545.
doi: 10.1080/07328308508082676 |
|
(d) Yu, J.; Lin, J.-H.; Yu, D.; Du, R.; Xiao, J.-C. Nat. Commun. 2019, 10, 5362.
doi: 10.1038/s41467-019-13359-z |
|
(e) Newton, J. J.; Jelier, B. J.; Meanwell, M.; Martin, R. E.; Britton, R.; Friesen, C. M. Org. Lett. 2020, 22, 1785.
doi: 10.1021/acs.orglett.0c00099 |
|
[37] |
(a) Delebecq, E.; Pascault, J.-P.; Boutevin, B.; Ganachaud, F. Chem. Rev. 2013, 113, 80.
doi: 10.1021/cr300195n pmid: 23082894 |
(b) Baars, H.; Engel, J.; Mertens, L.; Meister, D.; Bolm, C. Adv. Synth. Catal. 2016, 358, 2293.
doi: 10.1002/adsc.201600308 pmid: 23082894 |
|
[38] |
Quan, H.; Zhang, N.; Zhou, X.; Qian, H.; Sekiya, A. J. Fluorine Chem. 2015, 176, 26.
doi: 10.1016/j.jfluchem.2015.05.007 |
[39] |
Song, H.-X.; Han, Z.-Z.; Zhang, C.-P. Chem.-Eur. J. 2019, 25, 10907.
doi: 10.1002/chem.201901865 |
[40] |
(a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
|
(b) J, Dong.; L, Krasnova.; M, G. Finn.; Sharpless, K. B. Angew. Chem., Int. Ed. 2014, 53, 9430.
doi: 10.1002/anie.201309399 |
|
[41] |
Ogiwara, Y.; Sakai, N. Angew. Chem., Int. Ed. 2020, 59, 574.
doi: 10.1002/anie.201902805 |
[1] | Da-Lie An, Zhi-Peng Bao, Xiao-Feng Wu. Progresses on Fluorocarbon-Containing Substrates Involved Carbonylation Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2304-2312. |
[2] | Qiuyu Gu, Tianyu Peng, Mingcheng Bo, Yifeng Wang. Selective Mono- and Di-deuterodefluorination of Trifluoroacetamides Promoted by Boryl Radicals [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1832-1842. |
[3] | Chengfu Zeng, Yuan He, Qing Li, Lin Dong. Ir(III)-Catalyzed Novel Three-Component Cascade Trifluoroethoxylation and One-Pot Method to Construct Complex Amide Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1115-1123. |
[4] | Zehui Li, Haoyu Zou, Lincai Li, Yiling Zhao, Hongping Zhu. Synthesis and Propylene Oxide Carbonylation Hydroesterification Catalytic Property of N,O-Ligand Coordination Cobalt Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3907-3915. |
[5] | Guangqing Guo, Zhong Lian. Application Progress of Silyl Carboxylic Acid in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3580-3589. |
[6] | Xiang Li, Yifan Zhang, Kailin Lu, Shihui Liu, Yongqiang Zhang. Aminofluorination-Based Structural Modification of Curcumol for the Construction of 3D-Shaped Natural Product Fragment Library [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2124-2133. |
[7] | Gaoxu Han, Hongtao Xu, Wei Hou. Rhodium(III) Catalyzed C(sp3)—H Functionalization [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 391-423. |
[8] | Junfei Li, Yuling Han, Yanhong Liu, Jianxin Chen. Synthesis of β-Nitroamide Derivatives Based on Carbamoylsilane [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3880-3889. |
[9] | Peng Wang, Da Yang, Huan Liu. Recent Advances on the Synthesis of β-Lactams by Involving Carbon Monoxide [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3448-3458. |
[10] | Zechen Wu, Cang Cheng, Yanghui Zhang. Transition Metal-Catalyzed Reactions of C—H Bonds with Carbon Monoxide [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2155-2174. |
[11] | Yangyang Weng, Jingping Qu, Yifeng Chen. Palladium-Catalyzed Allylic Carbonylative Negishi Cross-Coupling Reactions with Sterically Bulky Aromatic Isocyanides [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1949-1956. |
[12] | Jun Pan, Jingjing Wu, Fanhong Wu. Progress in Fluoroalkylation of Multicomponent [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 983-1001. |
[13] | Weilin Wang, Weidong Chen, Junfei Luo, Pan Xie. Recent Advances in C—H Fluorination and Amination with N-Fluorobenzenesulfonimide [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 543-552. |
[14] | Wang Feng, Tang Pingping. Recent Advances in Trifluoromethoxylation Reactions [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 1805-1813. |
[15] | Zhang Pengpeng, Han Shenghua, Chen Jianxin. Efficient Synthesis of β-Keto-α-hydroxy Secondary (Primary) Amides by Selective Aminocarbonylation of Vicinal Diketones Using Carbamoylsilane as an Amide Source [J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1737-1744. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||