Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (4): 1197-1209.DOI: 10.6023/cjoc202307008 Previous Articles Next Articles
Special Issue: 有机氟化学虚拟合辑
REVIEWS
收稿日期:
2023-07-10
修回日期:
2023-10-27
发布日期:
2023-11-15
基金资助:
Dong Liu, Xiaoye Zhang, Zhanfeng Li()
Received:
2023-07-10
Revised:
2023-10-27
Published:
2023-11-15
Contact:
E-mail: Supported by:
Share
Dong Liu, Xiaoye Zhang, Zhanfeng Li. Progress in the Application of Fluorine-Substituted Organic Hole Transport Materials for Perovskite Solar Cells[J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1197-1209.
HTM | Device configuration | Jsc/(mA•cm-2) | Voc/V | FF/% | PCE/% | Ref. |
---|---|---|---|---|---|---|
n-i-p devices | ||||||
SFX-p-2F | FTO/SnO2/Cs0.05(MA0.13FA0.87)0.95Pb(I0.83Br0.17)3/HTM/Au | 22.23 | 1.14 | 61.46 | 16.33 | [ |
SFX-m-2F | FTO/SnO2/Cs0.05(MA0.13FA0.87)0.95Pb(I0.83Br0.17)3 /HTM/Au | 22.64 | 1.16 | 71.85 | 18.86 | [ |
B3 | FTO/TiO2/m-TiO2/CH3NH3PbI3/HTM/Au | 20.90 | 0.91 | 64.00 | 12.10 | [ |
CzPF | FTO/c-TiO2/PCBM/MAPbI3/HTM/Au | 17.31 | 1.03 | 70.00 | 12.41 | [ |
TPB-2F | FTO/c-TiO2/MAPbI3/HTM/Au | 18.66 | 1.01 | 74.00 | 13.96 | [ |
BDT2FMeDPA | FTO/c-TiO2/mp-TiO2/(FAPbI3)0.85 (MAPbBr3)0.15/HTM/carbon | 21.40 | 1.00 | 66.00 | 14.50 | [ |
SF-DTBT | FTO/bl-TiO2/mp-TiO2/MAPbI3/HTM/Au | 22.80 | 0.97 | 70.00 | 15.50 | [ |
DF-DTBT | FTO/bl-TiO2/mp-TiO2/MAPbI3/HTM/Au | 22.82 | 1.10 | 74.00 | 18.70 | [ |
JY7 | FTO/c-TiO2/CH3NH3PbI3-xClx/HTM/Ag | 20.58 | 1.05 | 73.00 | 15.71 | [ |
JY6 | FTO/c-TiO2/CH3NH3PbI3-xClx/HTM/Ag | 21.39 | 1.07 | 81.00 | 18.54 | [ |
FOMePh | FTO/bl-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/HTM/Au | 23.95 | 0.98 | 72.53 | 17.08 | [ |
DFBT(DTS-FBTTh2)2 | FTO/TiO2/MAPbI3/HTM/Au | 20.70 | 1.10 | 76.00 | 17.30 | [ |
2FBTA-2 | FTO/c-TiO2/m-TiO2/FA1-xMAxPbI3/HTM/Au | 21.53 | 1.06 | 78.62 | 17.94 | [ |
IDIDF | FTO/bl-TiO2/mp-TiO2/(FAPbI3)0.92(MAPbBr3)0.08/HTM/Au | 23.55 | 1.04 | 77.20 | 19.05 | [ |
p-DTS(FBTTh2)2 | FTO/TiO2/MAPbI3/HTM/Au | 20.60 | 1.10 | 79.40 | 18.00 | [ |
CB-2 | FTO/c-TiO2/mp-TiO2/SnO2/[(FAPbI3)0.87(MAPbBr3)0.13]0.92- (CsPbI3)0.08]/HTM/Au | 23.19 | 1.02 | 76.70 | 18.23 | [ |
tpa-t-FBTD | FTO/SnO2/(FAPbI3)0.85(MAPbBr3)0.15/HTM/Au | 22.40 | 1.08 | 78.10 | 18.90 | [ |
3,6-SFY | FTO/c-TiO2/mp-TiO2/FAPbI3/HTM/Au | 23.17 | 1.08 | 76.00 | 19.02 | [ |
2,7-SFY | FTO/c-TiO2/mp-TiO2/FAPbI3/HTM/Au | 23.73 | 1.08 | 80.00 | 20.29 | [ |
Spiro-oF | FTO/c-TiO2/mp-TiO2/FAPbI3/HTM/Au | 26.34 | 1.16 | 80.15 | 24.50 | [ |
Spiro-mF | FTO/c-TiO2/mp-TiO2/FAPbI3/HTM/Au | 26.35 | 1.16 | 80.90 | 24.82 | [ |
p-i-n devices | ||||||
D43 | ITO/HTM/CH3NH3PbI3/PC61BM/BCP/Ag | 17.67 | 1.00 | 68.40 | 12.13 | [ |
DFTAB | ITO/HTM/CH3NH3PbI3/PCBM/Ag | 17.50 | 1.07 | 69.00 | 12.40 | [ |
3-F-br-4C | ITO/HTM/MAPbI3/C60/BCP/Ag | 20.20 | 1.06 | 80.00 | 17.20 | [ |
H2 | ITO/HTM/CH3NH3PbI3/PCBM/BCP/Ag | 22.93 | 1.06 | 76.90 | 18.69 | [ |
INIC-1F | ITO/PEDOT:PSS/MAPbI3-xClx/HTM/PCBM/PDIN/Ag | 22.80 | 1.01 | 81.50 | 18.80 | [ |
INIC-2F | ITO/PEDOT:PSS/MAPbI3-xClx/HTM/PCBM/PDIN/Ag | 23.10 | 1.01 | 82.70 | 19.30 | [ |
n-i-p devices | ||||||
DFBT-MTP | ITO/HTM/MAPbI3-xClx/C60/BCP/Ag | 23.01 | 1.10 | 79.70 | 20.15 | [ |
HTM-F | ITO/HTM/(FAPbI3)1-x(MAPbBr3)x/C60/BCP/Ag | 23.03 | 1.09 | 82.00 | 20.51 | [ |
HTM | Device configuration | Jsc/(mA•cm-2) | Voc/V | FF/% | PCE/% | Ref. |
---|---|---|---|---|---|---|
n-i-p devices | ||||||
SFX-p-2F | FTO/SnO2/Cs0.05(MA0.13FA0.87)0.95Pb(I0.83Br0.17)3/HTM/Au | 22.23 | 1.14 | 61.46 | 16.33 | [ |
SFX-m-2F | FTO/SnO2/Cs0.05(MA0.13FA0.87)0.95Pb(I0.83Br0.17)3 /HTM/Au | 22.64 | 1.16 | 71.85 | 18.86 | [ |
B3 | FTO/TiO2/m-TiO2/CH3NH3PbI3/HTM/Au | 20.90 | 0.91 | 64.00 | 12.10 | [ |
CzPF | FTO/c-TiO2/PCBM/MAPbI3/HTM/Au | 17.31 | 1.03 | 70.00 | 12.41 | [ |
TPB-2F | FTO/c-TiO2/MAPbI3/HTM/Au | 18.66 | 1.01 | 74.00 | 13.96 | [ |
BDT2FMeDPA | FTO/c-TiO2/mp-TiO2/(FAPbI3)0.85 (MAPbBr3)0.15/HTM/carbon | 21.40 | 1.00 | 66.00 | 14.50 | [ |
SF-DTBT | FTO/bl-TiO2/mp-TiO2/MAPbI3/HTM/Au | 22.80 | 0.97 | 70.00 | 15.50 | [ |
DF-DTBT | FTO/bl-TiO2/mp-TiO2/MAPbI3/HTM/Au | 22.82 | 1.10 | 74.00 | 18.70 | [ |
JY7 | FTO/c-TiO2/CH3NH3PbI3-xClx/HTM/Ag | 20.58 | 1.05 | 73.00 | 15.71 | [ |
JY6 | FTO/c-TiO2/CH3NH3PbI3-xClx/HTM/Ag | 21.39 | 1.07 | 81.00 | 18.54 | [ |
FOMePh | FTO/bl-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/HTM/Au | 23.95 | 0.98 | 72.53 | 17.08 | [ |
DFBT(DTS-FBTTh2)2 | FTO/TiO2/MAPbI3/HTM/Au | 20.70 | 1.10 | 76.00 | 17.30 | [ |
2FBTA-2 | FTO/c-TiO2/m-TiO2/FA1-xMAxPbI3/HTM/Au | 21.53 | 1.06 | 78.62 | 17.94 | [ |
IDIDF | FTO/bl-TiO2/mp-TiO2/(FAPbI3)0.92(MAPbBr3)0.08/HTM/Au | 23.55 | 1.04 | 77.20 | 19.05 | [ |
p-DTS(FBTTh2)2 | FTO/TiO2/MAPbI3/HTM/Au | 20.60 | 1.10 | 79.40 | 18.00 | [ |
CB-2 | FTO/c-TiO2/mp-TiO2/SnO2/[(FAPbI3)0.87(MAPbBr3)0.13]0.92- (CsPbI3)0.08]/HTM/Au | 23.19 | 1.02 | 76.70 | 18.23 | [ |
tpa-t-FBTD | FTO/SnO2/(FAPbI3)0.85(MAPbBr3)0.15/HTM/Au | 22.40 | 1.08 | 78.10 | 18.90 | [ |
3,6-SFY | FTO/c-TiO2/mp-TiO2/FAPbI3/HTM/Au | 23.17 | 1.08 | 76.00 | 19.02 | [ |
2,7-SFY | FTO/c-TiO2/mp-TiO2/FAPbI3/HTM/Au | 23.73 | 1.08 | 80.00 | 20.29 | [ |
Spiro-oF | FTO/c-TiO2/mp-TiO2/FAPbI3/HTM/Au | 26.34 | 1.16 | 80.15 | 24.50 | [ |
Spiro-mF | FTO/c-TiO2/mp-TiO2/FAPbI3/HTM/Au | 26.35 | 1.16 | 80.90 | 24.82 | [ |
p-i-n devices | ||||||
D43 | ITO/HTM/CH3NH3PbI3/PC61BM/BCP/Ag | 17.67 | 1.00 | 68.40 | 12.13 | [ |
DFTAB | ITO/HTM/CH3NH3PbI3/PCBM/Ag | 17.50 | 1.07 | 69.00 | 12.40 | [ |
3-F-br-4C | ITO/HTM/MAPbI3/C60/BCP/Ag | 20.20 | 1.06 | 80.00 | 17.20 | [ |
H2 | ITO/HTM/CH3NH3PbI3/PCBM/BCP/Ag | 22.93 | 1.06 | 76.90 | 18.69 | [ |
INIC-1F | ITO/PEDOT:PSS/MAPbI3-xClx/HTM/PCBM/PDIN/Ag | 22.80 | 1.01 | 81.50 | 18.80 | [ |
INIC-2F | ITO/PEDOT:PSS/MAPbI3-xClx/HTM/PCBM/PDIN/Ag | 23.10 | 1.01 | 82.70 | 19.30 | [ |
n-i-p devices | ||||||
DFBT-MTP | ITO/HTM/MAPbI3-xClx/C60/BCP/Ag | 23.01 | 1.10 | 79.70 | 20.15 | [ |
HTM-F | ITO/HTM/(FAPbI3)1-x(MAPbBr3)x/C60/BCP/Ag | 23.03 | 1.09 | 82.00 | 20.51 | [ |
HTM | Device configuration | Jsc/(mA•cm-2) | Voc/V | FF/% | PCE/% | Ref. |
---|---|---|---|---|---|---|
n-i-p devices | ||||||
PBDT(T)[2F]T | FTO/SnO2/MAPbI3/HTM/Ag | 16.60 | 1.03 | 68.00 | 11.60 | [ |
PBDT[2F]T | FTO/SnO2/MAPbI3/HTM/Ag | 22.60 | 1.06 | 72.60 | 17.50 | [ |
R2 | ITO/c-TiO2/mp-TiO2/MAPbBr3/HTM/Au | 23.10 | 0.88 | 66.20 | 13.57 | [ |
P2-2F | ITO/c-TiO2/mp-TiO2/MAPbI3/HTM/Au | 20.17 | 1.04 | 70.65 | 14.94 | [ |
R1 | ITO/c-TiO2/mp-TiO2/MAPbBr3/HTM/Au | 23.70 | 0.98 | 68.30 | 15.88 | [ |
PM6 | ITO/SnO2/ZnO/CsPbI2Br/HTM/MoO3/Ag | 15.68 | 1.24 | 82.54 | 16.06 | [ |
P6 | ITO/c-TiO2/mp-TiO2/MAPbI3/HTM/Au | 20.74 | 1.09 | 75.78 | 17.28 | [ |
PPDT2FBT | ITO/TiO2/CH3NH3PbBr3/HTM/Au | 20.70 | 1.08 | 79.10 | 17.70 | [ |
FEH | FTO/c-TiO2/mp-TiO2/CH3NH3PbI3/FEH/Au | 22.80 | 1.06 | 74.50 | 18.00 | [ |
P3 | FTO/meso-SnO2/MAPbI3/HTM/Au | 22.90 | 1.11 | 0.80 | 20.30 | [ |
2F-PTAA | FTO/d-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/HTM/Au | 23.40 | 1.13 | 70.30 | 18.60 | [ |
1F-PTAA | FTO/d-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/HTM/Au | 23.40 | 1.14 | 82.30 | 21.20 | [ |
PE8 | ITO/SnO2/(FA0.85MA0.15PbI3)/HTM/MoO3/Ag | 23.90 | 1.12 | 77.60 | 20.80 | [ |
PE9 | ITO/SnO2/(FA0.85MA0.15PbI3)/HTM/MoO3/Ag | 24.10 | 1.15 | 78.20 | 21.70 | [ |
PE10 | ITO/SnO2/(FA0.85MA0.15PbI3)/HTM/MoO3/Ag | 24.10 | 1.16 | 79.80 | 22.30 | [ |
p-i-n devices | ||||||
FIAnF | ITO/HTM/(FA0.79MA0.16Cs0.05)Pb(I0.84Br0.16)3/C60/BCP/Ag | 20.67 | 1.04 | 58.00 | 12.19 | [ |
CzAnF | ITO/HTM/(FA0.79MA0.16Cs0.05)Pb(I0.84Br0.16)3/C60/BCP/Ag | 20.73 | 1.03 | 80.00 | 16.81 | [ |
BNo-F | ITO/HTM/MAPbI3 /PCBM/BCP/Ag | 22.31 | 1.06 | 80.20 | 19.07 | [ |
BNs-F | ITO/HTM/MAPbI3 /PCBM/BCP/Ag | 22.78 | 1.08 | 83.40 | 20.56 | [ |
PFDT-2F-COOH | ITO/HTM/FA1–xMAxPbI3/PCBM/C60/BCP/Cu | 24.86 | 1.11 | 78.50 | 21.68 | [ |
HTM | Device configuration | Jsc/(mA•cm-2) | Voc/V | FF/% | PCE/% | Ref. |
---|---|---|---|---|---|---|
n-i-p devices | ||||||
PBDT(T)[2F]T | FTO/SnO2/MAPbI3/HTM/Ag | 16.60 | 1.03 | 68.00 | 11.60 | [ |
PBDT[2F]T | FTO/SnO2/MAPbI3/HTM/Ag | 22.60 | 1.06 | 72.60 | 17.50 | [ |
R2 | ITO/c-TiO2/mp-TiO2/MAPbBr3/HTM/Au | 23.10 | 0.88 | 66.20 | 13.57 | [ |
P2-2F | ITO/c-TiO2/mp-TiO2/MAPbI3/HTM/Au | 20.17 | 1.04 | 70.65 | 14.94 | [ |
R1 | ITO/c-TiO2/mp-TiO2/MAPbBr3/HTM/Au | 23.70 | 0.98 | 68.30 | 15.88 | [ |
PM6 | ITO/SnO2/ZnO/CsPbI2Br/HTM/MoO3/Ag | 15.68 | 1.24 | 82.54 | 16.06 | [ |
P6 | ITO/c-TiO2/mp-TiO2/MAPbI3/HTM/Au | 20.74 | 1.09 | 75.78 | 17.28 | [ |
PPDT2FBT | ITO/TiO2/CH3NH3PbBr3/HTM/Au | 20.70 | 1.08 | 79.10 | 17.70 | [ |
FEH | FTO/c-TiO2/mp-TiO2/CH3NH3PbI3/FEH/Au | 22.80 | 1.06 | 74.50 | 18.00 | [ |
P3 | FTO/meso-SnO2/MAPbI3/HTM/Au | 22.90 | 1.11 | 0.80 | 20.30 | [ |
2F-PTAA | FTO/d-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/HTM/Au | 23.40 | 1.13 | 70.30 | 18.60 | [ |
1F-PTAA | FTO/d-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/HTM/Au | 23.40 | 1.14 | 82.30 | 21.20 | [ |
PE8 | ITO/SnO2/(FA0.85MA0.15PbI3)/HTM/MoO3/Ag | 23.90 | 1.12 | 77.60 | 20.80 | [ |
PE9 | ITO/SnO2/(FA0.85MA0.15PbI3)/HTM/MoO3/Ag | 24.10 | 1.15 | 78.20 | 21.70 | [ |
PE10 | ITO/SnO2/(FA0.85MA0.15PbI3)/HTM/MoO3/Ag | 24.10 | 1.16 | 79.80 | 22.30 | [ |
p-i-n devices | ||||||
FIAnF | ITO/HTM/(FA0.79MA0.16Cs0.05)Pb(I0.84Br0.16)3/C60/BCP/Ag | 20.67 | 1.04 | 58.00 | 12.19 | [ |
CzAnF | ITO/HTM/(FA0.79MA0.16Cs0.05)Pb(I0.84Br0.16)3/C60/BCP/Ag | 20.73 | 1.03 | 80.00 | 16.81 | [ |
BNo-F | ITO/HTM/MAPbI3 /PCBM/BCP/Ag | 22.31 | 1.06 | 80.20 | 19.07 | [ |
BNs-F | ITO/HTM/MAPbI3 /PCBM/BCP/Ag | 22.78 | 1.08 | 83.40 | 20.56 | [ |
PFDT-2F-COOH | ITO/HTM/FA1–xMAxPbI3/PCBM/C60/BCP/Cu | 24.86 | 1.11 | 78.50 | 21.68 | [ |
[1] |
Lu L.-Y.; Zheng T.-Y.; Wu Q.-H.; Alexander M.; Schneider; Zhao, D.-L.; Yu, L.-P. Chem. Rev. 2015, 115, 12666.
doi: 10.1021/acs.chemrev.5b00098 |
[2] |
Carella A.; Borbone F.; Centore R. Front. Chem. 2018, 6, 1.
doi: 10.3389/fchem.2018.00001 |
[3] |
Nazeeruddin M.-K.; Snaith H. Mater. Res. Bull. 2015, 40, 641.
|
[4] |
Wang Y.-B.; Wu T.-H.; Barbaud J.; Kong W.-Y.; Cui D.-Y.; Chen H.; Yang X.-D.; Han L.-Y. Science 2019, 365, 687.
doi: 10.1126/science.aax8018 |
[5] |
Zhu H.-G.; Liu Y.-H.; Eickemeyer F.-T.; Pan L.-F.; Ren D.; Ruiz-Preciado M.-A.; Carlsen B.; Yang B.-W.; Dong X.-F.; Wang Z.-W.; Liu H.-L.; Wang S.-R.; Zakeeruddin S.-M.; Hagfeldt A.; Dar M.-I.; Li X.-G.; Grätzel M. Adv. Mater. 2020, 32, 1907757.
doi: 10.1002/adma.v32.12 |
[6] |
Kojima A.; Teshima K.; Shirai Y.; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
doi: 10.1021/ja809598r |
[7] |
Min H.; Lee, D-Y.; Kim, J.; Kim, G.; Lee, K.-S.; Kim, J.; Paik, M.-J.; Kim, Y.-K.; Kim, K.-S.; Kim, M.-G.; Shin, T.-J.; Seok, S. Nature 2021, 598, 444.
doi: 10.1038/s41586-021-03964-8 |
[8] |
Green M.-A.; Hishikawa Y.; Dunlop E.-D.; Yoshita M.; Kopidakis N.; Bothe K.; Hinken D.; Rauer M.; Hao X.-J. Prog. Photovoltaics 2017, 26, 3.
doi: 10.1002/pip.v26.1 |
[9] |
Yang B.; Suo J.; Di Giacomo F.; Olthof S.; Bogachuk D.; Kim Y.; Sun X.; Wagner L.; Fu F.; Zakeeruddin S.-M.; Hinsch A.; Gratzel M.; Di Carlo A.; Hagfeldt A. ACS Energy Lett. 2021, 6, 3916.
doi: 10.1021/acsenergylett.1c01811 |
[10] |
Al-Ashouri A.; Köhnen E.; Li B.; Magomedov A.; Hempel H.; Caprioglio P.; Márquez J.-A.; Morales Vilches A.-B.; Kasparavicius E.; Smith J.-A. Science 2020, 370, 1300.
doi: 10.1126/science.abd4016 pmid: 33303611 |
[11] |
Da Y.; Xuan Y.; Li Q. Sol. Energ. Mat. Sol. C 2018, 174, 206.
doi: 10.1016/j.solmat.2017.09.002 |
[12] |
McKenna B.; Evans R.-C. Adv. Mater. 2017, 29, 1606491.
doi: 10.1002/adma.v29.28 |
[13] |
Jeon N.-J.; Noh J.-H.; Yang W.-S.; Kim Y.-C.; Ryu S.; Seo J.; Seok S.-I. Nature 2015, 517, 476.
doi: 10.1038/nature14133 |
[14] |
Kim H.-S.; Lee C.-R.; Im J.-H.; Lee K.-B.; Moehl T.; Marchioro A.; Moon S.-J.; Humphry-Baker R.; Yum J.-H.; Moser J. E.; Grätzel M.; Park N.-G. Sci. Rep. 2012, 2, 591.
doi: 10.1038/srep00591 |
[15] |
Bronstein H.; Nielsen C.-B.; Schroeder B.-C.; McCulloch I. Nat. Rev. Chem. 2020, 4, 66.
doi: 10.1038/s41570-019-0152-9 pmid: 37128048 |
[16] |
Laeter J.-R.-D.; Böhlke J.-K.; Bièvre P.-E.; Hidaka H.; Peiser H.-S.; Rosman K.-J.-R.; Taylor P.-D.-P. Pure Appl. Chem. 2003, 75, 683.
doi: 10.1351/pac200375060683 |
[17] |
Yao H.-F.; Wang J.-W.; Xu Y.; Zhang S.-Q.; Hou J.-H. Acc. Chem. Res. 2020, 53, 822.
doi: 10.1021/acs.accounts.0c00009 |
[18] |
Zhang Q.-Q.; Kelly M.-A.; Bauer N.; You W. Acc. Chem. Res. 2017, 50, 2401.
doi: 10.1021/acs.accounts.7b00326 |
[19] |
Li Z.-F., Tong Y.-H.; Ren J.-K.; Sun Q.-J.; Tian Y.; Cui Y.-X.; Wang H.; Hao Y.-Y. Chem. Eng. 2020, 402, 125923.
doi: 10.1016/j.cej.2020.125923 |
[20] |
Ren J.-K.; Qu J.-S.; Chen J.-B.; Li Z.-F.; Cui Y.-X.; Wang H.; Yu Z.; Hao Y.-Y. J. Power Sources 2018, 401, 29.
doi: 10.1016/j.jpowsour.2018.08.070 |
[21] |
Guo S.-S.; Zhang X.-Y.; Li Z.-F.; Chen Y.-M.; Wang H.; Hao Y.-Y. Sol. RRL 2021, 5, 2100506.
doi: 10.1002/solr.v5.10 |
[22] |
Li X.-Q.; Sun N.; Li Z.-F.; Chen J.-B.; Sun Q.-J.; Wang H.; Hao Y.-Y. New J. Chem. 2021, 45, 735.
doi: 10.1039/D0NJ02943B |
[23] |
Li Z.-F.; Chen J.-B.; Ren J.-K.; Sun Q.-J.; Wang H.; Yu J.-S.; Hao Y.-Y. Org. Electron. 2018, 62, 366.
doi: 10.1016/j.orgel.2018.08.030 |
[24] |
Chen J.; Ren J.; Li Z.-F.; Wang H.; Hao Y.-Y. Org. Electron. 2018, 56, 59.
doi: 10.1016/j.orgel.2018.01.009 |
[25] |
Chen Z.-L.; Li H.; Zheng X.-L.; Zhang Q.; Li Z.-F.; Hao Y.-Y.; Fang G.-J. ChemSusChem 2017, 10, 3111.
doi: 10.1002/cssc.v10.15 |
[26] |
Li Z.-F.; Chen J.-B.; Li H.; Zhang Q.; Chen Z.-L.; Zheng X.-L.; Fang G.-J.; Wang H.; Hao Y.-Y. RSC Adv. 2017, 7, 41903.
doi: 10.1039/C7RA06643K |
[27] |
Wan L.; Zhang W.; Fu S.; Chen L.-J.; Wang Y.-M.; Xue Z.-Y.; Tao Y.-T.; Zhang W.-J.; Song W.-J.; Fang J.-F. J. Mater. Chem. A 2020, 8, 6517.
doi: 10.1039/D0TA00522C |
[28] |
Xiang W.-C.; Pan J.-Y.; Chen Q. ACS Appl. Energy Mater. 2020, 3, 5977.
doi: 10.1021/acsaem.0c00918 |
[29] |
Ali J.; Gao P.; Zhou G.-Q.; Li Y.; Hao T.-Y.; Song J.-N.; Xu J.-Q.; Qian K.; Zhang Q.-Z.; Zhu L.; Zhang M.; Wang J.; Feng W.; Hu H. L.; Liu F. Adv. Electron. Mater. 2020, 6, 2000149.
doi: 10.1002/aelm.v6.12 |
[30] |
Tan S.; Huang T.-Y.; Yavuz I.; Wang R.; Yoon T.-W.; Xu M.-J.; Xing Q.-Y.; Park K.; Lee D.-K.; Chen, C-H.; Zheng, R.; Yoon, T.; Zhao, Y.-P.; Wang, H.-C.; Meng, D.; Xue, J.-J.; Song, Y.-J.; Pan, X.-Q.; Park, N.-G.; Lee, J.-W. Nature 2022, 605, 268.
doi: 10.1038/s41586-022-04604-5 |
[31] |
Yang X.; Wang H.; Cai B.; Yu Z.; Sun L. Energy Chem. 2018, 27, 650.
|
[32] |
Javier U.-M.; Ines G.-B.; Agustín M.-O.; Nazario M. Chem. Soc. Rev. 2018, 47, 8541.
doi: 10.1039/C8CS00262B |
[33] |
Spalla M.; Perrin L.; Planes E.; Matheron M.; Berson S.; Flandin L. ACS Appl. Energy Mater. 2020, 3, 3282.
doi: 10.1021/acsaem.9b02281 |
[34] |
Bakr Z.-H.; Wali Q.; Fakharuddin A.; Schmidt-Mendec L.; Browne T.-M.; Josea R. Nano Energy 2017, 34, 271.
doi: 10.1016/j.nanoen.2017.02.025 |
[35] |
Wang F.-F.; Cao Y.-Z.; Chen C.; Chen Q.; Wu X.; Li X.-G.; Qin T.-S.; Huang W. Adv. Funct. Mater. 2018, 28, 1803753.
doi: 10.1002/adfm.v28.52 |
[36] |
Grisorio R.; Iacobellis R.; Listorti A.; Marco L.-D.; Cipolla M.-P.; Manca M.; Rizzo A.; Abate A.; Gigli G.; Suranna G.-P. ACS Appl. Mater. Inter. 2017, 9, 24778.
doi: 10.1021/acsami.7b05484 |
[37] |
Niu X.-X.; Li N.-X.; Zhu C.; Liu L.; Zhao Y.-Z.; Ge Y.; Chen Y.-H.; Xu Z.-Q.; Lu Y.; Sui M.-L.; Chen Q.; Li Y.-J.; Tarasov A.; Goodilin E.-A.; Zhou H.-P.; Chen Q. Mater. Chem. A 2019, 7, 7338.
doi: 10.1039/C9TA01070J |
[38] |
Zhou X.-S.; Qiu L.-L.; Fan R.-Q.; Wang A.-N.; Ye H.-X.; Tian C.-H.; Hao S.; Yang Y.-L. Sol. RRL 2020, 4, 1900380.
doi: 10.1002/solr.v4.3 |
[39] |
Du Q.; Shen Z.-T.; Chen C.; Li F.-M.; Jin M.-Q.; Li H.-L.; Dong C.; Zheng J.-H.; Ji M.-X.; Wang M.-T. Sol. RRL 2021, 5, 2100622.
doi: 10.1002/solr.v5.11 |
[40] |
Cao W.; Zhang J.; Lin K.; Qiu L.; Li J.; Dong Y.; Xia D.; Yang Y. Nano Energy 2022, 104, 107924.
doi: 10.1016/j.nanoen.2022.107924 |
[41] |
Yang W.-S.; Noh J.-H.; Jeon N.-J.; Kim Y.-C.; Ryu S.; Seo J. Science 2015, 348, 1234.
doi: 10.1126/science.aaa9272 |
[42] |
Jung E.-H.; Jeon N.-J.; Park E.-Y.; Moon C.-S.; Shin T.-J.; Yang T.-Y.; Noh J.-H.; Seo J. Nature 2019, 567, 511.
doi: 10.1038/s41586-019-1036-3 |
[43] |
Hu W.; Xu C.-Y.; Niu L.-B.; Elseman A.-M.; Wang G.; Yan D.; Yao Y.-Q.; Liao L.; Zhou G.-D.; Song Q.-L. ACS Appl. Mater. Inter. 2019, 11, 22021.
doi: 10.1021/acsami.9b06526 |
[44] |
Redondo-Obispo C.; Ripolles T.-S.; Cortijo-Campos S.; Alvarez A.-L.; Climent-Pascual E.; de Andres A.; Coya C. Mater. Des. 2020, 191, 108237.
|
[45] |
Wang Z.-J.; Li J.-W.; Zhang D.-Y.; Yang G.-J.; Yu J.-S. Chin. Phys. B 2022, 31, 087802.
doi: 10.1088/1674-1056/ac5988 |
[46] |
Jung J.-W.; Chueh C.-C.; Jen A.-K.-Y. Adv. Mater. 2015, 27, 7874.
doi: 10.1002/adma.v27.47 |
[47] |
Ma S.; Zhang H.; Zhao N.; Cheng Y.-B.; Wang M.-K.; Shen Y.; Tu G.-L. J. Mater. Chem. A 2015, 3, 12139.
doi: 10.1039/C5TA01155H |
[48] |
Sandoval-Torrientes R.; Zimmermann I.; Calbo J.; Aragó J.; Santos J.; Martín N.; Nazeeruddin M.-K. J. Mater. Chem. A 2018, 6, 5944.
doi: 10.1039/C7TA11314E |
[49] |
Urieta-Mora J.; Garcia-Benito I.; Molina-Ontoria A.; Martin N. Chem. Soc. Rev. 2018, 47, 8541.
doi: 10.1039/C8CS00262B |
[50] |
Yang X.; Wang H.-X.; Cai B.; Yu Z.; Sun L.-C. J. Energy Chem. 2018, 27, 650.
doi: 10.1016/j.jechem.2017.12.017 |
[51] |
Jeong M.; Choi I.-W.; Go E.-M.; Cho Y.-J.; Kim M.; Lee B.; Jeong S.; Jo Y.; Choi H.-W.; Lee J.-H.; Kwak S.-K.; Kim D.-S.; Yang C. Science 2020, 369, 1615.
doi: 10.1126/science.abb7167 |
[52] |
Heo J.-H.; Park S.; Im S.-H.; Son H.-J. ACS Appl. Mater. Inter. 2017, 9, 39511.
doi: 10.1021/acsami.7b11938 |
[53] |
Hwang H.; Park S.; Heo J.-H.; Kim W.; Ahn H.; Kim T.-S.; Im S.-H.; Son H.-J. J. Power Sources 2019, 418, 167.
doi: 10.1016/j.jpowsour.2019.02.017 |
[54] |
Bae Y.; Li L.; Yang K.; Mosurkal R.; Kumar K. ACS Appl. Energy Mater. 2021, 4, 10459.
doi: 10.1021/acsaem.1c01234 |
[55] |
Sun Y.; Peng Y.; Zhao C.; Zhang J.; Ghadari R.; Hu L.-H.; Kong F.-T. Dyes Pigments 2022, 197, 109889.
doi: 10.1016/j.dyepig.2021.109889 |
[56] |
Ghaderian A.; Pegu M.; Hemasiri N.-H.; Huang P.; Ahmad S.; Kazim S. J. Mater. Chem. 2022, 10, 476.
|
[57] |
Li Z.-N.; Yun Y.-K.; Huang H.-Y.; Ding Z.-C.; Li X.-W.; Zhao B.-M.; Huang W. J. Energy Chem. 2021, 57, 341.
doi: 10.1016/j.jechem.2020.08.041 |
[58] |
Wu F.; Ji Y.; Zhong C.; Liu Y.; Tan L.-X.; Zhu L.-N. Chem. Commum. 2017, 53, 8719.
doi: 10.1039/C7CC04606E |
[59] |
Tian Y.; Tao L.; Chen C.; Lu H.-F.; Li H.-P.; Yang X.-C.; Cheng M. Dyes Pigm. 2021, 184, 108786.
doi: 10.1016/j.dyepig.2020.108786 |
[60] |
Benhattab S.; Cho A.-N.; Nakar R.; Berton N.; Tran-Van F.; Park N.-G.; Schmaltz B. Org. Electron. 2018, 56, 27.
doi: 10.1016/j.orgel.2017.12.031 |
[61] |
Tao L.; Chen C.; Wu C.; Ding X.-D.; Zheng M.-M.; Li H.-P.; Li G.-Q.; Lu G.-Q.; Lu H.-F.; Cheng M. Sol. RRL 2020, 4, 1900362.
doi: 10.1002/solr.v4.3 |
[62] |
Zhou X.; Kong F.-T.; Sun Y.; Huang Y.; Zhang X.-X.; Ghadari R. Dyes Pigm. 2020, 173, 107954.
doi: 10.1016/j.dyepig.2019.107954 |
[63] |
Yang Y.; Un Ryu S.; Wu F.; Lu H.-Q.; Jia K.-K.; Zhong C.; Park T.; Zhu L.-N. Chem. Eng. J. 2021, 424, 130396.
doi: 10.1016/j.cej.2021.130396 |
[64] |
Igci C.; Kanda H.; Yoo S.-M.; Sutanto A.-A.; Syzgantseva O.-A.; Syzgantseva M.-A.; Jankauskas V.; Rakstys K.; Mensi M.; Kim H.; Asiri A.-M.; Nazeeruddin M.-K. Sol. RRL 2021, 6, 2100667.
doi: 10.1002/solr.v6.1 |
[65] |
Cho I.; Jeon N.-J.; Kwon O.-K.; Kim D.-W.; Jung E.-H.; Noh J.-H.; Seo J.; Seok S.; Park S.-Y. Chem. Sci. 2017, 8, 734.
doi: 10.1039/C6SC02832B |
[66] |
Liu T.; Chen K.; Hu Q.; Zhu R.; Gong Q.-H. Adv. Energy Mater. 2016, 6, 1600457.
doi: 10.1002/aenm.v6.17 |
[67] |
Shang R.; Zhou Z.; Nishioka H.; Halim H.; Furukawa S.; Takei I.; Ninomiya N.; Nakamura E. J. Am. Chem. Soc. 2018, 140, 5018.
doi: 10.1021/jacs.8b01783 pmid: 29624381 |
[68] |
Duan L.-S.; Wu Q.-P.; Xu Y.-Y.; Wang H.; Sun Z.; Chen Y.; Xue S. Chin. J. Chem. Phys. 2021, 34, 217.
doi: 10.1063/1674-0068/cjcp2006106 |
[69] |
Wu J.-H.; Hu M.-M.; Zhang L.-Z.; Song G.-J.; Li Y.; Tan W.-C.; Tian Y.-Q.; Xu B.-M. Chem. Eng. J. 2021, 422, 130124.
doi: 10.1016/j.cej.2021.130124 |
[70] |
Liu K.; Dai S.-X.; Meng F.; Shi J.-J.; Li Y.-S.; Wu J.-H.; Meng Q.-B.; Zhan X.-W. J. Mater. Chem. A 2017, 5, 21414.
doi: 10.1039/C7TA06923E |
[71] |
Wang Y.-K.; Ma H.; Chen Q.-Y.; Sun Q.; Liu Z.-X.; Sun Z.; Jia Z.-G.; Zhu Y.-Y.; Zhang S.; Zhang J.; Yuan N.; Ding J.-N.; Zhou Y.; Song B.; Li Y.-F. ACS Appl. Mater. Inter. 2021, 13, 7705.
doi: 10.1021/acsami.0c20584 |
[72] |
Labban A.-E.; Chen H.; Kirkus M.; Barbe J.; Gobbo S.; Neophytou M.; McCulloch I.; Eid J. Adv. Energy Mater. 2016, 6, 1502101.
doi: 10.1002/aenm.v6.11 |
[73] |
Zhang F.-G.; Yao Z.-Y.; Guo Y.-X.; Li Y.-Y.; Bergstrand J.; Brett C.-J.; Cai B.; Hajian A.; Guo Y.; Yang X.-C.; Widengren J.; Roth S.-V.; Kloo L.; Sun L.-C. J. Am. Chem. Soc. 2019, 141, 19700.
doi: 10.1021/jacs.9b08424 |
[74] |
Reichenbacher K.; Suss H.-I.; Hulliger J. Chem. Soc. Rev. 2005, 34, 22.
doi: 10.1039/B406892K |
[75] |
Liu X.-H.; Fu S.; Zhang W.-X.; Xu Z.-H.; Li X.-D.; Fang J.-F.; Zhu Y.-J. ACS Appl. Mater. Inter. 2021, 13, 52549.
doi: 10.1021/acsami.1c13792 |
[76] |
Kranthiraja K.; Park S.-H.; Kim H.; Gunasekar K.; Han G.; Kim B.-J.; Kim C.-S.; Kim S.; Lee H.; Nishikubo R.; Saeki A.; Jin S.; Song M. ACS Appl. Mater. Inter. 2017, 9, 36053.
doi: 10.1021/acsami.7b09146 |
[77] |
Rana P.-J.-S.; Gunasekaran R.-K.; Park S.-H.; Tamilavan V.; Karuppanan S.; Kim H.-J.; Prabakar K. J. Phys. Chem. C 2019, 123, 8560.
doi: 10.1021/acs.jpcc.8b11898 |
[78] |
Yao Z.-Y.; Zhang F.-G.; He L.-L.; Bi X.-Q.; Guo Y.-X.; Guo Y.; Wang L.-Q.; Wan X.-J.; Chen Y.-S.; Sun L.-C. Angew. Chem., Int. Ed. 2022, 61, e202201847.
|
[79] |
Kranthiraja K.; Gunasekar K.; Kim H.; Cho A.-N.; Park N.-G.; Kim S.; Kim B.-J.; Nishikubo R.; Saeki A.; Song M.; Jin S. Adv. Mater. 2017, 29, 1700183.
doi: 10.1002/adma.v29.23 |
[80] |
Kong X.-Y.; Jiang Y.; Wu X.-Y.; Chen C.; Guo J.-L.; Liu S.-J.; Gao X.-S.; Zhou G.-F.; Liu J.-M.; Kempa K.; Gao J.-W. J. Mater. Chem. A 2020, 8, 1858.
doi: 10.1039/C9TA11744J |
[81] |
Kim Y.-W.; Jung E.-H.; Kim G.; Kim D.; Kim B.-J.; Seo J. Adv. Energy Mater. 2018, 8, 1801668.
doi: 10.1002/aenm.v8.29 |
[82] |
Koh C.-W.; Heo J.-H.; Uddin M.-A.; Kwon Y.-W.; Choi D.-H.; Im S.-H.; Woo H.-Y. ACS Appl. Mater. Inter. 2017, 9, 43846.
doi: 10.1021/acsami.7b12973 |
[83] |
Jeong I.; Jo J.-W.; Bae S.; Son H.-J; Ko M.-J. Dyes Pigm. 2019, 164, 1.
doi: 10.1016/j.dyepig.2019.01.002 |
[84] |
Lian X.-M.; Chen J.-H.; Fu R.-L.; Lau T.-K.; Zhang Y.-Z.; Wu G.; Lu X.-H.; Fang Y.-J.; Yang D.; Chen H.-Z. J. Mater. Chem. A 2018, 6, 24633.
doi: 10.1039/C8TA08203K |
[85] |
Luo M.; Zong X.-P.; Zhao M.; Sun Z.; Chen Y.; Liang M.; Wu Y.-Z.; Xue S. Chem. Eng. J. 2022, 442, 136136.
doi: 10.1016/j.cej.2022.136136 |
[86] |
Astridge D.-D.; Hoffman J.-B.; Zhang F.; Park S.-Y.; Zhu K.; Sellinger A. ACS Appl. Polym. Mater. 2021, 3, 5578.
doi: 10.1021/acsapm.1c00891 |
[1] | Jin Xiaodong, Bi Tianbo, Xin Ran, Wu Guoping, Xu Tongxiang, Ma Rongliang. Advances in the Application of Organic Materials for the Development of Latent Fingerprints [J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4184-4202. |
[2] | Wang Xiaobing;Tang Daihua;Wang Fengqi;Zhen Zhen;Zhang Jiancheng;Liu Xinhou. Synthesis of naphthalocyaninatocobalt compounds [J]. Chin. J. Org. Chem., 1999, 19(3): 249-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||