Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (4): 1181-1196.DOI: 10.6023/cjoc202308003 Previous Articles Next Articles
REVIEWS
张晓, 胡密霞, 杜艳青, 梁凤英, 张笑迎, 额尔敦*()
收稿日期:
2023-08-04
修回日期:
2023-11-06
发布日期:
2023-11-23
基金资助:
Xiao Zhang, Mixia Hu, Yanqing Du, Fengying Liang, Xiaoying Zhang, Chaolu Eerdun()
Received:
2023-08-04
Revised:
2023-11-06
Published:
2023-11-23
Contact:
E-mail: Supported by:
Share
Xiao Zhang, Mixia Hu, Yanqing Du, Fengying Liang, Xiaoying Zhang, Chaolu Eerdun. Research Progress on Anion-π Interactions[J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1181-1196.
Complex | E/(kJ•mol–1) | Eint(kJ•mol–1) | Re(cation-π)/nm | Re(anion-π)/nm |
---|---|---|---|---|
Na+…C6H6 | –87.86 | 0.2429 | ||
Na+…C6F3H3 | –34.35 | 0.2552 | ||
Na+…C6F6 | +14.64 | 0.2652 | ||
C6H6…F– | +11.72 | 0.3162 | ||
C6H6…Cl– | +10.04 | 0.3731 | ||
C6H6…Br– | +7.95 | 0.3840 | ||
Na+…C6H6…F– | –389.53 | –93.68 | 0.2280 | 0.2482 |
Na+…C6H6…Cl– | –356.10 | –91.76 | 0.2304 | 0.3049 |
Na+…C6H6…Br– | –352.54 | –92.55 | 0.2313 | 0.3157 |
Na+…C6F3H3…F– | –380.49 | –81.50 | 0.2353 | 0.2368 |
Na+…C6F3H3…Cl– | –336.18 | –71.71 | 0.2389 | 0.2925 |
Na+…C6F3H3…Br– | –330.08 | –66.94 | 0.2399 | 0.3006 |
Na+…C6H6…F– | –369.95 | –71.50 | 0.2437 | 0.2286 |
Na+…C6H6…Cl– | –316.44 | –50.42 | 0.2488 | 0.2835 |
Na+…C6H6…Br– | –293.05 | –46.99 | 0.2495 | 0.2913 |
Complex | E/(kJ•mol–1) | Eint(kJ•mol–1) | Re(cation-π)/nm | Re(anion-π)/nm |
---|---|---|---|---|
Na+…C6H6 | –87.86 | 0.2429 | ||
Na+…C6F3H3 | –34.35 | 0.2552 | ||
Na+…C6F6 | +14.64 | 0.2652 | ||
C6H6…F– | +11.72 | 0.3162 | ||
C6H6…Cl– | +10.04 | 0.3731 | ||
C6H6…Br– | +7.95 | 0.3840 | ||
Na+…C6H6…F– | –389.53 | –93.68 | 0.2280 | 0.2482 |
Na+…C6H6…Cl– | –356.10 | –91.76 | 0.2304 | 0.3049 |
Na+…C6H6…Br– | –352.54 | –92.55 | 0.2313 | 0.3157 |
Na+…C6F3H3…F– | –380.49 | –81.50 | 0.2353 | 0.2368 |
Na+…C6F3H3…Cl– | –336.18 | –71.71 | 0.2389 | 0.2925 |
Na+…C6F3H3…Br– | –330.08 | –66.94 | 0.2399 | 0.3006 |
Na+…C6H6…F– | –369.95 | –71.50 | 0.2437 | 0.2286 |
Na+…C6H6…Cl– | –316.44 | –50.42 | 0.2488 | 0.2835 |
Na+…C6H6…Br– | –293.05 | –46.99 | 0.2495 | 0.2913 |
[1] |
Giese M.; Albrecht M.; Rissanen K. Chem. Rev. 2015, 115, 8867.
doi: 10.1021/acs.chemrev.5b00156 |
[2] |
Evans N. H.; Beer P. P. Angew. Chem., Int. Ed. 2014, 53,11716.
doi: 10.1002/anie.v53.44 |
[3] |
Schneider H. J. In Ionic Interactions in Supramolecular Complexes, Vol. 2, Eds.: Alberto, C.; Angelo, P., Wiley, New York, 2012, p. 35.
|
[4] |
Marcus Y. In Ionic Interactions in Natural and Synthetic Macromolecules, Eds.: Ciferri, A.; Perico, A., Wiley, New York, 2012, p. 1.
|
[5] |
Zhu Y.-J.; Tang M.-M.; Zhang H.-B.; Rahman F. U.; Ballester P.; Rebek J., Jr; Hunter, C. A.; Yu, Y. J. Am. Chem. Soc. 2021, 143, 12397.
doi: 10.1021/jacs.1c06510 |
[6] |
Beer P. D.; Gale P. A. Angew. Chem., Int. Ed. 2001, 40, 486.
doi: 10.1002/1521-3773(20010202)40:3【-逻*辑*与-】amp;lt;【-逻*辑*与-】amp;gt;1.0.CO;2-A |
[7] |
Zapata F.; Benítez-Benítez S. J.; Sabater P.; Caballero A.; Molina P. Molecules 2017, 22, 2273.
doi: 10.3390/molecules22122273 |
[8] |
Athare S. V.; Gejji S. P. ChemistrySelect 2019, 4, 9354.
doi: 10.1002/slct.v4.32 |
[9] |
Haldar C.; Hoque M. E.; Bisht R.; Chattopadhyay B. Tetrahedron Lett. 2018, 59, 1269.
doi: 10.1016/j.tetlet.2018.01.098 |
[10] |
Yang Z.; Li X.-Y.; Yang K.; Yu N.; Gao R.; Ren Y. J. Org. Chem. 2023, 88, 2792.
doi: 10.1021/acs.joc.2c02424 |
[11] |
Guo J.-J.; Guo M.-J. Chin. J. Org. Chem. 2021, 41, 2946. (in Chinese)
|
(郭京京, 郭敏捷, 有机化学, 2021, 41, 2946.)
doi: 10.6023/cjoc202103012 |
|
[12] |
Li J.; Han Y.; Chen C.-F. Chin. J. Org. Chem. 2020, 40, 3714. (in Chinese)
doi: 10.6023/cjoc202005007 |
(李晶, 韩莹, 陈传峰, 有机化学, 2020, 40, 3714.)
doi: 10.6023/cjoc202005007 |
|
[13] |
He Q.; Zuniga V.; Kim S. H.; Kim S. K. Sessler J. L. Chem. Rev. 2019, 119, 9753.
doi: 10.1021/acs.chemrev.8b00734 |
[14] |
Pinheiro S.; Soteras I.; Gelpi J. L.; Dehez F.; Chipot C.; Luque F. J.; Curutchet C. Phys. Chem. Chem. Phys. 2017, 19, 9849.
doi: 10.1039/c6cp08448f pmid: 28352893 |
[15] |
Yamada S. J. Chem. Rev. 2018, 118, 11353.
doi: 10.1021/acs.chemrev.8b00377 |
[16] |
Quinonero D.; Garau C.; Rotger C.; Frontera A.; Ballester P.; Costa A.; Deya P. M. Angew. Chem., Int. Ed. 2002, 41, 3389.
doi: 10.1002/1521-3773(20020916)41:18【-逻*辑*与-】amp;lt;3389::AID-ANIE3389【-逻*辑*与-】amp;gt;3.0.CO;2-S |
[17] |
Mascal M.; Armstrong A.; Bartberger M. D. J. Am. Chem. Soc. 2002, 124, 6274.
pmid: 12033854 |
[18] |
Hoog P. D.; Gamez P.; Mutikainen I.; Turpeinen U.; Reedijk J. Angew. Chem., Int. Ed. 2004, 43,5815.
doi: 10.1002/anie.v43:43 |
[19] |
Qin H.-M.; Jiang J.; Sun X.-X.; Lin N.; Yang P.-F.; Chen Y. Inorg. Chem. 2023, 62, 6458.
doi: 10.1021/acs.inorgchem.3c00471 |
[20] |
Tan M.-L.; Lopez M. A. G.; Sakai N.; Matile S.; Angew. Chem., Int. Ed. 2023, 62, e202310393.
doi: 10.1002/anie.v62.40 |
[21] |
Odubo F. E.; Zeller M.; Rosokha S. V. J. Phys. Chem. A 2023, 127, 5851.
doi: 10.1021/acs.jpca.3c02704 |
[22] |
Liu L.-X.; Li C.-B.; Gong J.-Y.; Zhang Y.; Ji W.-W.; Feng L.-N.; Jiang G.-Y.; Wang J.-G.; Tang B.-Z. Angew. Chem., Int. Ed. 2023, e202307776.
|
[23] |
(a) Wu X.; Wang P.; Lewis W.; Jiang Y.-B.; Gale P. A. Nat. Commun. 2022, 13, 4623.
doi: 10.1038/s41467-022-32403-z |
(b) Saha P.; Madhavan N. Org. Lett. 2020, 22, 5104.
doi: 10.1021/acs.orglett.0c01699 |
|
[24] |
Hohenberg P.; Kohn W. Phys. Rev. 1964, 136, B864.
doi: 10.1103/PhysRev.136.B864 |
[25] |
Kohn W.; Sham L. J. Phys. Rev. 1965, 140, A1133.
doi: 10.1103/PhysRev.140.A1133 |
[26] |
Bader R. F. W.; Matta C. F. Found. Chem. 2013, 15, 253.
doi: 10.1007/s10698-012-9153-1 |
[27] |
Thirman J.; Head-Gordon M. J. Phys. Chem. A 2017, 121, 717.
doi: 10.1021/acs.jpca.6b11516 |
[28] |
Liu Y.-Z.; Yuan K.; Yuan Z.; Zhu Y.-C.; Lv L.-L. RSC Adv. 2016, 6, 14666.
doi: 10.1039/C5RA26068J |
[29] |
Reilly A. M.; Tkatchenko A. Chem. Sci. 2015, 6, 3289.
doi: 10.1039/C5SC00410A |
[30] |
Wang D.-X.; Wang M.-X. Acc. Chem. Res. 2020, 53, 1364.
doi: 10.1021/acs.accounts.0c00243 |
[31] |
Frontera A.; Gamez P.; Mascal M.; Mooibroek T. J.; Reedijk J. Angew. Chem., Int. Ed. 2011, 50, 9564.
doi: 10.1002/anie.201100208 pmid: 21928463 |
[32] |
Berryman O. B.; Bryantsev V. S.; Stay D. P.; Johnson D. W.; Hay B. P. J. Am. Chem. Soc. 2007, 129, 48.
pmid: 17199282 |
[33] |
Hay B. P.; Bryantsev V. S. Chem. Commun. 2008, 7; 2417.
|
[34] |
Masoodi H. R.; Pourhosseini R. S.; Bagheri S. Comput. Theor. Chem. 2023, 1220, 114022.
doi: 10.1016/j.comptc.2023.114022 |
[35] |
Quinonero D.; Frontera A.; Garau C.; Ballester P.; Costa A.; Deya P. M. ChemPhysChem 2006, 7, 2487.
doi: 10.1002/cphc.v7:12 |
[36] |
Garau C.; Quinonero D.; Frontera A.; Ballester P.; Costa A.; Deya P. M. New J. Chem. 2003, 27, 211.
doi: 10.1039/b210110f |
[37] |
Li Z.-F.; Li H.-X.; Yang X.-P. Phys. Chem. Chem. Phys. 2014, 16, 25876.
doi: 10.1039/C4CP03551H |
[38] |
Anstoter C.; Rogers J. P.; Verlet J. R. R. J. Am. Chem. Soc. 2019, 141, 6132.
doi: 10.1021/jacs.9b01345 |
[39] |
Liu Z.-Y.; Chen Z.; Xu X. CCS Chem. 2020, 2, 904.
|
[40] |
Liu Z.-X.; Chen Z.; Xi J.-Y.; Xu X. Natl. Sci. Rev. 2020, 7, 1036.
doi: 10.1093/nsr/nwaa051 |
[41] |
Liu Z.-Y.; Chen Z.; Xu X. Chin. J. Chem. Phys. 2020, 33, 285.
doi: 10.1063/1674-0068/cjcp2005069 |
[42] |
Fan X.-Z.; Liu X.; He Z.-L.; Zhu K.-Y.; Shi G.-S. J. Mol. Model 2022, 28, 225.
doi: 10.1007/s00894-022-05218-4 |
[43] |
Tuo D.-H.; Ao Y.-F.; Wang Q.-Q.; Wang D.-X. CCS Chem. 2022, 4, 2806.
doi: 10.31635/ccschem.021.202101366 |
[44] |
Salonen M. S. L. M.; Ellermann M.; Diederich F. Angew. Chem., Int. Ed. 2011, 50, 4808.
doi: 10.1002/anie.201007560 pmid: 21538733 |
[45] |
Quinonero D.; Frontera A.; Escudero D.; Ballester P.; Costa A.; Daya P. M. ChemPhysChem 2007, 8, 1182.
doi: 10.1002/cphc.v8:8 |
[46] |
Chen T.-W.; Wang L.-Y.; Li S.-Y.; Dong L.-C.; Tan L.-X. Org. Lett. 2023, 25, 5774.
doi: 10.1021/acs.orglett.3c02002 |
[47] |
Giese M.; Albrecht M.; Rissanen K. Chem. Commun. 2016, 52, 1778.
doi: 10.1039/C5CC09072E |
[48] |
Murata C.; Shin J.; Konishi K. Chem. Commun. 2023, 59, 2441.
doi: 10.1039/D2CC06875C |
[49] |
Park C. H.; Simmons H. E. J. Am. Chem. Soc. 1968, 90, 2431.
doi: 10.1021/ja01011a047 |
[50] |
Maeda H.; Haketa Y.; Murata T.; Ohta E.; Marata T.; Yasuda N. Org. Biomol. Chem. 2021, 19, 7369.
doi: 10.1039/D1OB01094H |
[51] |
Wang D.-X.; Wang Q.-Q.; Han Y.-C.; Wang Y.-L.; Huang Z.-T.; Wang M.-X. Chem.-Eur. J. 2010, 16, 13053.
doi: 10.1002/chem.v16.44 |
[52] |
Liu W.; Wang Q.-Q.; Wang Y.-Y.; Huang Z.-T.; Wang D.-X. RSC Adv. 2014, 4, 9339.
doi: 10.1039/c3ra47748g |
[53] |
Tuo D.-H.; Liu W.; Wang X.-Y.; Wang X.-D.; Ao F.-Y.; Wang Q.-Q.; Li Z.-Y.; Wang D.-X. J. Am. Chem. Soc. 2019, 141, 1118.
doi: 10.1021/jacs.8b12018 |
[54] |
(a) Wang X.-Y.; Zhu J.; Wang Q.-Q.; Ao Y.-F.; Wang D.-X. Inorg. Chem. 2019, 58, 5980.
doi: 10.1021/acs.inorgchem.9b00295 |
(b) Rather I. A.; Wagay S. A.; Ali R. Coord. Chem. Rev. 2020, 415, 213327.
doi: 10.1016/j.ccr.2020.213327 |
|
[55] |
Wang D.-X.; Wang M.-X. J. Am. Chem. Soc. 2013, 135, 892.
doi: 10.1021/ja310834w |
[56] |
He Q.; Ao Y.-F.; Huang Z.-T.; Wang D.-X. Angew. Chem., Int. Ed. 2015, 54, 11785.
doi: 10.1002/anie.v54.40 |
[57] |
Li Z.-Y.; Li C.-L.; Li P.; Zuo Y.; Liu X.-N.; Xu S.-J.; Zou L.-Y. Zhuang Q.-X.; Gao S.; Liu X.-Y.; Zhang S.-D. ChemPlusChem 2020, 85, 906.
doi: 10.1002/cplu.v85.5 |
[58] |
Li Y.-J.; Huang, T-T.; Liu, J.; Xie, Y.-Q.; Shi, B.-B.; Zhang, Y.-M.; Yao, H.; Wei, T-B.; Lin, Q. ACS Sustainable Chem. Eng. 2022, 10, 7907.
doi: 10.1021/acssuschemeng.2c00537 |
[59] |
Ballester P.; Scarso A. Front. Chem. 2019, 7, 174.
doi: 10.3389/fchem.2019.00174 pmid: 30972330 |
[60] |
Zhao Y.-J.; Cotelle Y.; Liu L.; Lopez-Andarias J.; Bornhof A.-B.; Akamatsu M.; Sakai N.; Matile S. Acc. Chem. Res. 2018, 51, 2255.
doi: 10.1021/acs.accounts.8b00223 |
[61] |
Neel A. J.; Hilton M. J.; Sigman M. S.; Toste F. D. Nature 2017, 543, 637.
doi: 10.1038/nature21701 |
[62] |
Zhao Y.-J.; Domoto Y. Y.; Orentas E.; Beuchat C.; Emery D.; Mareda J.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2013, 52, 9940.
doi: 10.1002/anie.v52.38 |
[63] |
Zhao Y.-J.; Sakai N.; Matile S. Nat. Commun. 2014, 5, 3911.
doi: 10.1038/ncomms4911 |
[64] |
Bornhof A.-B.; Bauza A.; Aster A.; Pupier M.; Frontera A.; Vauthey E.; Skai N.; Matile. S. J. Am. Chem. Soc. 2018, 140, 4884.
doi: 10.1021/jacs.8b00809 |
[65] |
Cotelle Y.; Benz S.; Avestro A. J.; Ward T. R.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2016, 55, 4275.
doi: 10.1002/anie.201600831 pmid: 26916316 |
[66] |
Wang C.; Miros F. N.; Mareda J.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2016, 55, 14422.
doi: 10.1002/anie.v55.46 |
[67] |
Buglioni L.; Mastandrea M. M.; Frontera A.; Pericas M. A. Chem.-Eur. J. 2019, 25, 11785.
doi: 10.1002/chem.201903055 pmid: 31282595 |
[68] |
Lopez-Andarias J.; Frontera A.; Matile S. J. Am. Chem. Soc. 2017, 139, 13296.
doi: 10.1021/jacs.7b08113 |
[69] |
Bornhof A.-B.; Vazquez-Nakagawa M.; Rodrigue-Perez L.; Herranz M. A.; Sakai N.; Martin N.; Matile S.; Lopez-Andarias J. Angew. Chem., Int. Ed. 2019, 58, 16097.
doi: 10.1002/anie.v58.45 |
[70] |
Liu L.; Cotelle Y.; Bornhof A.-B.; Besnard C.; Sakai N.; Matile S. Angew. Chem., Int. Ed. 2017, 56, 13066.
doi: 10.1002/anie.201707730 pmid: 28884964 |
[71] |
Luo N.; Ao Y.-F.; Wang D.-X.; Wang Q.-Q. Angew. Chem., Int. Ed. 2021, 60, 20650.
doi: 10.1002/anie.v60.38 |
[72] |
Molina P.; Zapata F.; Caballero A. Chem. Rev. 2017, 117, 9907.
doi: 10.1021/acs.chemrev.6b00814 pmid: 28665114 |
[73] |
Chang Y.-X.; Li B.; Guo M.; Cai Y.-H.; Xu K.-X. Chin. J. Org. Chem. 2019, 39, 2485. (in Chinese)
doi: 10.6023/cjoc201903010 |
(常永新, 李白, 郭淼, 蔡永红, 徐括喜, 有机化学, 2019, 39, 2485.)
doi: 10.6023/cjoc201903010 |
|
[74] |
Kaur N.; Kaur G.; Fegade U. A.; Singh A.; Sahoo S. K.; Kuwar A. S.; Singh N. TrAC, Trends Anal. Chem. 2017, 95, 86.
doi: 10.1016/j.trac.2017.08.003 |
[75] |
Xiao L.-W.; Ren P.; Jing X.-M.; Ren L.-L.; Li Z.; Dai F.-C. Chin. J. Org. Chem. 2017, 37, 3085. (in Chinese)
doi: 10.6023/cjoc201705043 |
(肖立伟, 任萍, 景学敏, 任丽磊, 李政, 戴富才, 有机化学, 2017, 37, 3085.)
doi: 10.6023/cjoc201705043 |
|
[76] |
Kim D.; Tarakeshwar P.; Kim K. S. J. Phys. Chem. A 2004, 108, 1250.
doi: 10.1021/jp037631a |
[77] |
Kan X.-N.; Liu H.; Pan Q.-Y.; Li Z.-B.; Zhao Y.-J. Chin. Chem. Lett. 2018, 29, 261.
doi: 10.1016/j.cclet.2017.08.042 |
[78] |
Mascal M. Angew. Chem., Int. Ed. 2006, 45, 2890.
doi: 10.1002/anie.v45:18 |
[79] |
Guo Q.-H.; Fu Z.-D.; Zhao L.; Wang M.-X. Angew. Chem., Int. Ed. 2014, 53, 13548.
doi: 10.1002/anie.v53.49 |
[80] |
Plais R.; Boufroura H.; Gouarin G.; Gaucher A.; Haldys V.; Brosseau A.; Clavier G.; Salpin J. Y.; Prim D. RSC Adv. 2021, 11, 9476.
doi: 10.1039/D1RA00630D |
[81] |
Plais R.; Gouarin G.; Bournier A.; Zayene O.; Mussard V.; Bourdreux F.; Marrot J.; Brosseau A.; Gaucher A.; Clavier G.; Salpin J. Y.; Prim D. ChemPhysChem 2023, 24, e202200524.
doi: 10.1002/cphc.v24.2 |
[82] |
Huang W.-L.; Wang X.-D.; Li S.; Zhang R.; Ao Y.-F.; Tang J.; Wang Q.-Q.; Wang D.-X. J. Org. Chem. 2019, 84, 8859.
doi: 10.1021/acs.joc.9b00561 |
[83] |
Malenov D. P.; Zaric S. D. Chem.-Eur. J. 2021, 27, 17862.
doi: 10.1002/chem.202102896 pmid: 34719802 |
[84] |
Eytel L. M.; Gibert A. K.; Gorner P.; Zakharov L. N.; Johnson D. W.; Haley M. M. Chem.-Eur. J. 2017, 23, 4051.
doi: 10.1002/chem.201605452 pmid: 28198117 |
[85] |
Luo J.; Zhu J.; Tuo D.-H.; Yuan Q.-Q.; Wang L.; Wang X.-B.; Ao F.-Y.; Wang Q.-Q.; Wang D.-X. Chem.-Eur. J. 2019, 25, 13275.
doi: 10.1002/chem.v25.58 |
[86] |
Zeng H.; Liu P.-R.; Feng G.-Q.; Huang F.-H. J. Am. Chem. Soc. 2019, 141, 16501.
doi: 10.1021/jacs.9b09582 |
[87] |
Yang H.-H.; Liu P.-P.; Hu J.-P.; Fang H.; Lin Q.; Hong Y.; Zhang Y.-M.; Qu W.-J.; Wei T.-B. Soft Matter 2020, 16, 9876.
doi: 10.1039/D0SM01392G |
[88] |
Orenha R. P.; Silva V. B. D.; Caramori G. F.; Piotrowski M. J.; Nagurniak G. R.; Parreira R. L. Phys. Chem. Chem. Phys. 2021, 23, 11455.
doi: 10.1039/D1CP00113B |
[89] |
Queizan M.; Sanchez-Lozano M.; Mandado M.; Hermida-Ramon J. M. H. J. Chem. Inf. Model. 2021, 61, 4455.
doi: 10.1021/acs.jcim.1c00595 |
[90] |
Li W.-C.; Qin P.; Zhao X.-X.; Qu W.-J.; Lin Q.; Yao H.; Wei T.-B.; Zhang Y.-M.; Liu Y.-Z.; Shi B.-B. Org. Biomol. Chem. 2022, 20, 9122.
doi: 10.1039/D2OB01579J |
[91] |
Guo S.-Y.; Tong S.; Guo Q.-H.; Wang M.-X. Org. Chem. Front. 2023, 10, 1405.
doi: 10.1039/D3QO00024A |
[92] |
Luo J.-D.; Xie Z.-L.; Lam J. W. Y.; Cheng L.; Chen H.-Y.; Qiu C.-F.; Kwok H. S.; Zhan X.-W.; Liu Y.-Q.; Zhu D.-B.; Tang B.-Z. Chem. Commun. 2001, 1740.
|
[93] |
Jiang G.-Y.; Wang J.-G.; Tang B.-Z. ChemMedChem 2023, 18, e202200697.
doi: 10.1002/cmdc.v18.6 |
[94] |
Tian X.-Q.; Zuo M.-Z.; Niu P.-B.; Wang K.-Y.; Hu X.-Y. Chin. J. Org. Chem. 2020, 40, 1823. (in Chinese)
doi: 10.6023/cjoc202003066 |
(田雪琪, 左旻瓒, 牛蓬勃, 王开亚, 胡晓玉, 有机化学, 2020, 40, 1823.)
doi: 10.6023/cjoc202003066 |
|
[95] |
Wang J.-G.; Gu X.-G.; Zhang P.-F.; Huang X.-B.; Zheng X.-Y.; Chen M.; Feng H.-T.; Kwok R. T. K.; Lam J. W. Y.; Tang B.-Z. J. Am. Chem. Soc. 2017, 139, 16974.
doi: 10.1021/jacs.7b10150 |
[96] |
Nie H.; Hu K.; Cai Y.-J.; Peng Q.; Zhao Z.-J.; Hu R.-R.; Chen J.-W.; Su S.-J.; Qin A.-J.; Tang B.-Z. Mater. Chem. Front. 2017, 1, 1125.
doi: 10.1039/C6QM00343E |
[97] |
Bolle P.; Cheret Y.; Roiland C.; Sanguinet L.; Faulques E.; Serier-Brault H.; Bouit P. A.; Hissler M.; Dessapt R. Chem.-Asian J. 2019, 14, 1642.
doi: 10.1002/asia.v14.10 |
[98] |
Jiang G.-Y.; Yu J.; Wang J.-G.; Tang B.-Z. Aggregate 2022, 3, e285.
doi: 10.1002/agt2.v3.6 |
[99] |
Lin Q.; Gong G.-F.; Fan Y.-Q.; Chen Y.-Y.; Wang J.; Guan X.-W.; Liu J.; Zhang Y.-M.; Yao H.; Wei T.-B. Chem. Commun. 2019, 55, 3247.
doi: 10.1039/C8CC09876J |
[100] |
Gong G.-F.; Chen Y.-Y.; Zhang Y.-M.; Fan Y.-Q.; Zhou Q.; Yang H.-L.; Zhang Q.-P.; Yao H.; Wei T.-B.; Lin Q. Soft Matter 2019, 15, 6348.
doi: 10.1039/C9SM01035A |
[101] |
Gong G.-F.; Chen Y.-Y.; Zhang Y.-M.; Fan Y.-Q.; Zhao Q.; An J.-N.; Yao H.; Wei T.-B.; Lin Q. ACS Sustainable Chem. Eng. 2020, 8, 5831.
doi: 10.1021/acssuschemeng.9b06076 |
[102] |
Kim S.; Kim J.; Lee D. Angew. Chem., Int. Ed. 2021, 60, 10858.
doi: 10.1002/anie.v60.19 |
[103] |
Li Q.-Y.; Gong J.-Y.; Li Y.; Zhang R.-Y.; Wang H.-R.; Zhang J.-Q.; Yan H.; Lam J. W. Y.; Sung H. H. Y.; Williams L. D.; Kwok R. T. K.; Li M.-H.; Wang J.-G.; Tang B.-Z. Chem. Sci. 2021, 12, 709.
doi: 10.1039/D0SC04725B |
[104] |
Chen K.-Q.; Li G.-G.; Zhang H.; Wu H.-Z.; Li Y.; Li Y.-X.; Wang Z.-M.; Tang B.-Z. Chem. Eng. J. 2022, 433, 133646.
doi: 10.1016/j.cej.2021.133646 |
[105] |
Jiang G.-Y.; Hu R.; Li C.-B.; Gong J.-Y.; Wang J.-G.; Lam J. W. Y.; Qin A.-J.; Tang B.-Z. Chem.-Eur. J. 2022, 28, e202202388.
doi: 10.1002/chem.v28.63 |
[1] | Zeya Shen, Shiyao Li, Liupan Yang, Lili Wang, Huan Yao. Research Progress on the Construction and Application of Macrocyclic Fluorescent Sensing Platform Based on Indicator Displacement Assay [J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1151-1159. |
[2] | Shan Chen, Zhilin Chen, Qiong Hu, Yanshuang Meng, Yue Huang, Pingfang Tao, Liru Lu, Guobao Huang. Recognition of Bis-thiourea Tweezers to Neutral Molecules in Non-Polar Solvent [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 277-281. |
[3] | Fen Li, Chuanzhi Liu, Zhiyuan Hu, Panpan Luo, Rongzheng Cui, Yanke Huang, Xinming Liu, Lantao Liu, Wei Wu. Intermolecular Halogen and Hydrogen Bonding-Controlled Self-Assembly of Network Structures [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 705-711. |
[4] | Huiming Lu, Lamaocao Ma, Hengchang Ma. Research Progress and Prospect of Aggregation-Induced Emission Supramolecular Luminescence Materials [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4075-4105. |
[5] | Yangyang Li, Xiaofei Sun, Xiaoling Hu, Yuanyuan Ren, Keli Zhong, Xiaomei Yan, Lijun Tang. Synthesis of Triphenylamine Derivative and Its Recognition for Hg2+ with “OFF-ON” Fluorescence Response Based on Aggregation-Induced Emission (AIE) Mechanism [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 320-325. |
[6] | Li Guan, Yongbao Mao, Yanyan Zhou, Xiaowen Feng, Yile Fu. Research Progress in Cyanine-Based Recognition Probes for G-Quadruplex DNA [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2406-2417. |
[7] | Binghan Lin, Jibin Zhuo, Caixia Lin, Yong Gao, Yaofeng Yuan. Synthesis and Nucleotide Recognition Properties of Carborane-Based Benzoimidazolium Cyclophane [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2551-2558. |
[8] | Mianyuan Wu, Jun You, Yanchao Yu, Wenju Wu. A Novle Quinoline Hydrazone-Based Fluorescent Probe for Sequential Determination of Cu2+/Glyphosate and Its Applications [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2559-2567. |
[9] | Yuetian Guo, Yongxin Pan, Lijun Tang. Progresses in Reactive Fluorescent Probes with Fused Aggregation- Induced Emission (AIE) and Excited State Intramolecular Proton Transfer (ESIPT) Structures [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1640-1650. |
[10] | Mianyuan Wu, Yanchao Yu, Yang Liu, Jun You, Wenju Wu, Bo Liu. Synthesis and Application of a Novel Fluorescent Probe for Sequential Recognition Cu2+ and Glyphosate [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 803-811. |
[11] | Yuqing He, Lin Chen, Ruili He, Keli Zhong, Lijun Tang. Research Progress of Fluorescence Probes Constructed by Cyclodextrin Derivatives and Inclusion Complexes [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 785-795. |
[12] | Xinying Li, Zhixiang Zhao, Linhai Hu, Dengche Wei, Qingxiang Liu. Tetraphenylethylene-Based Tetradentate Azolium Salts: Synthesis and Selective Recognition for Ions [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3608-3616. |
[13] | Jingjing Guo, Minjie Guo. Progress in Design and Application of Supramolecular Fluorescent Systems Based on Difluoroboron-Dipyrromethene and Macrocyclic Compounds [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 2946-2963. |
[14] | Changxing Ji, Guangxia Wang, Hua Wang. Progress in Metal-Organic Supramolecular System Based on Subcomponent Self-Assembly [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2261-2279. |
[15] | Chao Wang, Xin Wang, Keli Zhong, Shuhua Hou, Xiaomei Yan, Yanjiang Bian, Lijun Tang. A Long-Wavelength Fluorescent Probe for Naked Eye Recognition of HSO3-/SO32- in Aqueous Solution and Its Application [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2417-2423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||