Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (9): 2640-2657.DOI: 10.6023/cjoc202401018 Previous Articles Next Articles
REVIEWS
收稿日期:
2024-03-02
修回日期:
2024-05-05
发布日期:
2024-05-10
通讯作者:
刘全忠
基金资助:
Jia-Xi Jiang, Quan-Zhong Liu()
Received:
2024-03-02
Revised:
2024-05-05
Published:
2024-05-10
Contact:
Quan-Zhong Liu
Supported by:
Share
Jia-Xi Jiang, Quan-Zhong Liu. Non-Metallic Carbene Pathway Transformations of Vinyl Diazo Compounds[J]. Chinese Journal of Organic Chemistry, 2024, 44(9): 2640-2657.
[1] |
(a) Michael, P. D.; Doyle, M. P. In Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, Hoboken, Newjersy, U. S. A., Wiley, 1998.
pmid: 30543264 |
(b) Suleman, M.; Lu, P.; Wang, Y. Org. Chem. Front. 2021, 8, 2059.
pmid: 30543264 |
|
(c) Akter, M.; Rupa, K.; Anbarasan, P. Chem. Rev. 2022, 122, 13108.
pmid: 30543264 |
|
(d) Ciszewski, Ł. W.; Rybicka-Jasińska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432.
doi: 10.1039/c8ob02703j pmid: 30543264 |
|
(e) Zhu, D.; Chen, L.; Fan, H.; Yao, Q.; Zhu, S. Chem. Soc. Rev. 2020, 49, 908.
pmid: 30543264 |
|
(f) Candeias, N. R.; Paterna, R.; Gois, P. M. P. Chem. Rev. 2016, 116, 293.
pmid: 30543264 |
|
(g) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
pmid: 30543264 |
|
(h) Qiu, D.; Wang, J. In Recent Developments of Diazo Compounds in Organic Synthesis, World Scientific (Europe), Singapore, 2020.
pmid: 30543264 |
|
(i) Tian, M.; Yang, L.; Liu, B.; Chang, J. Chin. J. Chem. 2023, 41, 1327.
pmid: 30543264 |
|
[2] |
(a) Zhang, Y.; Zhou, G.; Gong, X.; Guo, Z.; Qi, X.; Shen, X. Angew. Chem., Int. Ed. 2022, 61, e202202175.
|
(b) Roy, A.; Goswami, S. P.; Sarker, A. Synth. Commun. 2018, 48, 2003.
|
|
(c) Wu, W.; Lin, Z.; Jiang, H. Org. Biomol. Chem., 2018, 16, 7315.
|
|
(d) Dong, K.; Liu, M.; Xu, X. Molecules 2022, 27, 3088.
|
|
(e) Hao, T.; Shi, M.; Wei, Y. Chin. J. Chem. 2023, 41, 301.
|
|
[3] |
(a) Che, J.; Niu, L.; Xiong, D.; Hu, W. Nat. Commun. 2020, 11, 1511.
pmid: 26847664 |
(b) Guo, X.; Hu, W. Acc. Chem. Res. 2013, 46, 2427.
pmid: 26847664 |
|
(c) Zhang, D.; Hu, W. Chem. Rec. 2017, 17, 739.
pmid: 26847664 |
|
(d) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.
pmid: 26847664 |
|
(e) Qiu, H.; Li, M.; Jiang, L.-Q.; Lv, F.-P.; Zhan, L.; Zhai, C.-W.; Doyle, M. P.; Hu, W.-H. Nat. Chem. 2012, 4, 733.
pmid: 26847664 |
|
(f) Zhou, C.-Y.; Wang, J.-C.; Wei, J.; Xu, Z.-J.; Guo, Z.; Low, K.-H.; Che, C.-M. Angew. Chem., Int. Ed. 2012, 51, 11376.
pmid: 26847664 |
|
(g) Jia, S.; Xing, D.; Zhang, D.; Hu, W. Angew. Chem., Int. Ed. 2014, 53, 13098.
pmid: 26847664 |
|
(h) Nicolle, S. M.; Lewis, W.; Hayes, C. J.; Moody, C. J. Angew. Chem., Int. Ed. 2016, 55, 3749.
doi: 10.1002/anie.201511433 pmid: 26847664 |
|
(i) Yuan, W.; Eriksson, L.; Szabό, K. J. Angew. Chem., Int. Ed. 2016, 55, 8410.
pmid: 26847664 |
|
[4] |
(a) Tang, F.; Pu, M. J. Am. Chem. Soc. 2021, 143, 2394.
pmid: 21553888 |
(b) Tan, F.; Liu, X.; Wang, Y.; Dong, S.; Yu, H.; Feng, X. Angew. Chem., Int. Ed. 2018, 57, 16176.
pmid: 21553888 |
|
(c) Xia, A.-J.; Kang, T.-R.; He, L.; Chen, L.-M.; Li, W.-T.; Yang, J.-L.; Liu, Q.-Z. Angew. Chem., Int. Ed. 2016, 55, 1441.
doi: 10.1002/anie.201508804 pmid: 21553888 |
|
(d) Li, S.-S.; Sun, S.; Wang, J.-B. Angew. Chem., Int. Ed. 2021, 61, e202115098.
pmid: 21553888 |
|
(e) Li, W.; Wang, J.; Hu, X. L.; Shen, K.; Wang, W. T.; Chu, Y. Y.; Lin, L. L.; Liu, X. H.; Feng, X. M. J. Am. Chem. Soc. 2010, 132, 8532.
pmid: 21553888 |
|
(f) Gao, L.; Kang, B. C.; Hwang, G.-S.; Ryu, D. H. Angew. Chem., Int. Ed. 2012, 51, 8322.
pmid: 21553888 |
|
(g) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2011, 133, 8834.
doi: 10.1021/ja202070j pmid: 21553888 |
|
[5] |
(a) Chen, Y.; Yu, R.; Wang, M.; Huang, Y.; Peng, Y. Adv. Synth. Catal. 2021, 363, 4856.
|
(b) Du, F.; Yin, L.; Ning, Y.; Peng, Y. Adv. Synth. Catal. 2016, 358, 2280.
|
|
(c) B. M. Trost, B. M.; Malhotra, S.; Koschker, P.; Ellerbrock, P. J. Am. Chem. Soc. 2012, 134, 2075.
|
|
(d) Trost, B. M.; Malhotra, S.; Fred, B. A. J. Am. Chem. Soc. 2009, 131, 1674.
|
|
(e) Wang, F.; Liu, X.; Zhang, Y.; Lin, L.; Feng, X. Chem. Commun. 2009, 7297.
|
|
(f) Trost, B. M.; Malhotra, S.; Koschker, P.; Ellerbrock, P. J. Am. Chem. Soc. 2011, 134, 2075.
|
|
(g) Trost, B. M.; Malhotra, S.; Ellerbrock, P. Org. Lett. 2013, 15, 440.
|
|
[6] |
(a) Davies, H. M. L.; Saikali, E.; Clark, T. J.; Chee, E. H. Tetrahedron Lett. 1990, 31, 6299.
|
(b) Davies, H. M. L.; Clark, T. J.; Smith, H. D. J. Org. Chem. 1991, 56, 3817.
|
|
[7] |
Davies, H. M. L.; Hougland, P. W.; Cantrell, W. R. Synth. Commmun. 1992, 22, 971.
|
[8] |
(a) Cheng, Q.-Q.; Yu, Y.; Yedoyan, J.; Doyle, M. P. ChemCatChem 2018, 10, 488.
|
(b) López, E.; González-Pelayo, S.; López, L. A. Chem. Rec. 2017, 17, 312.
|
|
(c) Marichev, K. O.; Zheng, H.; Doyle, M. P. In Transition Metal Catalysed Carbene Transformations, Wiley‐VCH GmbH, Weinheim Germany, 2022, Chapter 5, pp. 139-168, https://doi.org/10.1002/9783527829170.
|
|
(d) Cheng, Q.-Q.; Deng, Y.; Lankelma, M.; Doyle, M. P. Chem. Soc. Rev. 2017, 46, 5425.
|
|
(e) Xu, X.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396.
|
|
(f) Bao, M.; Zhou, S.; Xu, X. In More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles, John Wiley & Sons, New York, U. S. A., 2022, https://doi.org/10.1002/9781119757153.
|
|
[9] |
Zheng, H.; Dong, K.; Wherritt, D.; Arman, H.; Doyle, M. P. Angew. Chem., Int. Ed. 2020, 59, 13613.
|
[10] |
Barluenga, J.; Lonzi, G.; Riesgo, L.; Tomás, M.; López, L. A. J. Am. Chem. Soc. 2011, 133, 18138.
doi: 10.1021/ja208965b pmid: 22004455 |
[11] |
Angelis, L. A.; Zheng, H.; Perz, M. T.; Arman, H.; Doyle, M. P. Org. Lett. 2021, 23, 6542.
doi: 10.1021/acs.orglett.1c02352 pmid: 34370472 |
[12] |
Barluenga, J.; Riesgo, L.; López, L. A.; Rubio, E.; Tomás, M. Angew. Chem., Int. Ed. 2009, 48, 7569.
doi: 10.1002/anie.200903902 pmid: 19739180 |
[13] |
Xu, Y.; Wang, Z.; Sun, J. Org. Lett. 2021, 23, 7613.
|
[14] |
Barluenga, J.; Riesgo, L.; Lonzi, G.; Tomás, M.; López, L. A. Chem.-Eur. J. 2012, 18, 9221.
doi: 10.1002/chem.201200998 pmid: 22730267 |
[15] |
Mata, S.; González, M. J.; López, L. A.; Vicente, R. Chem.-Eur. J. 2017, 23, 1013.
|
[16] |
Doyle, M. P.; Kundu, K.; Russell, A. E. Org. Lett. 2005, 7, 5171.
|
[17] |
Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Org. Chem. 2013, 78, 5711.
|
[18] |
Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 11809.
|
[19] |
Pagar, V. V.; Liu, R.-S. Org. Biomol. Chem. 2015, 13, 6166.
|
[20] |
Deng, G.; Tian, X.; Qu, Z.; Wang, J. Angew. Chem., Int. Ed. 2002, 41, 2773.
|
[21] |
Bel, M. D.; Rovira, A.; Guerrero, C. A. J. Am. Chen. Soc. 2013, 135, 12188.
|
[22] |
Liu, Y.; Zhang, Y.; Jee, N.; Doyle, M. P. Org. Lett. 2008, 10, 1605.
doi: 10.1021/ol800298n pmid: 18351770 |
[23] |
Zheng, H.; Wang, K.; Faghihi, S.; Griffith, W. P.; Arman, H.; Doyle, M. P. ACS Catal. 2021, 11, 9869.
|
[24] |
Pagar, V. V.; Liu, R. S. Angew. Chem., Int. Ed. 2015, 54, 4923.
|
[25] |
Stefkova, K.; Guerzoni, M. G.; van Ingen, Y.; Richard, E.; Melen, R. L. Org. Lett. 2023, 25, 500.
|
[26] |
Raj, A. S. K.; Liu, R.-S. Angew. Chem., Int. Ed. 2019, 58, 10980.
|
[27] |
Raj, A. S. K.; Liu, R.-S. Adv. Synth. Catal. 2020, 362, 2517.
|
[28] |
Zheng, H.; Wang, K.; Angelis, L. D.; Arman, H. D.; Doyle, M. P. J. Am. Chem. Soc. 2021, 143, 15391.
|
[29] |
Raj, A. S. K.; Narode, A. S.; Liu, R.-S. Org. Lett. 2021, 23, 1378.
|
[30] |
Kardile, R. D.; Liu, R.-S. Org. Lett. 2020, 22, 8229.
|
[31] |
Jiang, Q.; Yang, T.; Li, Q.; Liang, G.-M.; Liu, Y.; He, C.-Y.; Chu, W.-D.; Liu, Q.-Z. Org. Lett. 2023, 25, 3184.
doi: 10.1021/acs.orglett.3c00192 pmid: 37125696 |
[32] |
Yang, T.; Jiang, Q.; Wang, C.-M.; Li, S.-L.; He, C.-Y.; Chu, W.-D.; Liu, Q.-Z. Org. Lett. 2023, 25, 2243.
|
[33] |
Li, W.; Zhou, X.; Xiao, T.; Ke, Z.; Zhou, L. CCS Chem. 2022, 4, 638.
|
[34] |
Li, W.; Zhou, L. Green. Chem. 2021, 23, 6652.
|
[35] |
Sarabia, F. J.; Li, Q.; Ferreira, E. M. Angew. Chem., Int. Ed. 2018, 57, 11015.
|
[36] |
Cho, Y. H.; Kim, J. H.; An, H.; Ahn, K.-H.; Kang, E. J. Adv. Synth. Catal. 2020, 362. 2183.
|
[37] |
Li, W.; Zhou, L. Org. Lett. 2021, 23, 4279.
|
[38] |
Li, S.; Zhou, L. Org. Lett. 2023, 25, 8700.
|
[39] |
Gall, B. K.; Smith, A. K.; Ferreira, E. M. Angew. Chem., Int. Ed. 2022, 61, e202212187.
|
[40] |
Li, W.; Li, S.; Empel, C.; Koenigs, R. M.; Zhou, L. Angew. Chem., Int. Ed. 2023, 62, e202309947.
|
[41] |
Dasgupta, A.; Bhattacharjee, S.; Tong, Z.; Guin, A.; McNamee, R. E.; Christensen, K. E.; Biju, A. T.; Anderson, E. A. J. Am. Chem. Soc. 2024, 146, 1196.
doi: 10.1021/jacs.3c13080 pmid: 38157245 |
[42] |
Xie, Y.; Zhang, R.; Chen, Z.-L.; Rong, M.; He, R.; Ni, S.; He, X.-K.; Xiao, W.-J.; Xuan, J. Adv. Sci. 2024, 11, 2306728.
|
[1] | Yu Zeng, Zhonghao Li, Siwei Deng, Zujia Chen, Biyu Chen, Shiwei Yu, Qing Shen, Zhaoyang Wang. Research Progress on Preparation and Application of Cyanoethylenes [J]. Chinese Journal of Organic Chemistry, 2024, 44(9): 2722-2731. |
[2] | Ying Fan, Danfeng Huang, Hu Ma, Zuyu Bai, Ke-Hu Wang, Junjiao Wang, Yulai Hu. Synthesis of Difluoromethyl Substituted 1,2,4-Triazoline Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(9): 2820-2831. |
[3] | Zhaoyang Zhang, Weiwei Luo, Jun Zhou. Research Progress of Radical Reactions Involving Silyl Enol Ethers [J]. Chinese Journal of Organic Chemistry, 2024, 44(9): 2658-2681. |
[4] | Xixian Cao, Jun You, Qiye Liu, Bo Liu, Yanchao Yu, Wenju Wu. (4S,4'S)-2,2'-(4,6-Dibenzofurandiyl)bis[4,5-dihydro-4-phenyloxazole]-Ni(II) Complexes Catalyzed Highly Enantioselective Nitrile Imine Cycloaddition Reactions [J]. Chinese Journal of Organic Chemistry, 2024, 44(7): 2315-2332. |
[5] | Yongwei Cui, Chunmiao Liang, Haitao Zhu, Chengping Shen, Feiyang Ren, Menghan Sun, Yuan Zhao, Wenjing Wang, Dongmei Wang, Nini Zhou. cis-Selective [5+2]-Cycloaddition Reactions of Cyclic Morita-Baylis- Hillman Alcohols and Its Analogues with Arylethylenes Catalyzed by Ag(I) [J]. Chinese Journal of Organic Chemistry, 2024, 44(5): 1535-1548. |
[6] | Yan Liu, Xiaomei Wang, Lin He, Shiwu Li, Zhifei Zhao. N-Heterocyclic Carbene (NHC)-Catalyzed [3+2] Cycloaddition to Highly Diastereoselective Synthesis of Spirooxindole Dihydrofuran Fused Pyrazolone Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1301-1310. |
[7] | Chen-Long Li, Zhi-Xiang Yu. Progress in Transition-Metal-Catalyzed Carbonylative Cycloadditions Using Carbon Monoxide [J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1045-1068. |
[8] | Mengzhu Li, Boying Meng, Wenjie Lan, Bin Fu. Synthesis of 2,3-Disubstituted Dihydrobenzofurans from o-Quinone Methides and Sulfur Ylides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 195-203. |
[9] | Huakun Wang, Xiaolong Ren, Yining Xuan. Study of the Halide Salt Catalyzed [3+2] Cycloaddition of α,β-Epoxy Carboxylate with Isocyanate [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 251-258. |
[10] | Hu Ma, Danfeng Huang, Kehu Wang, Duoduo Tang, Yang Feng, Yuanyuan Reng, Junjiao Wang, Yulai Hu. Synthesis of 3-Trifluoromethylpyrazole Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3257-3267. |
[11] | Zuliang Chen, Yingjing Wei, Junliang Zhang. Recent Advances in Cycloaddition Reactions of Donor-Acceptor Aziridines via Carbon-Carbon Bond Cleavage [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3078-3088. |
[12] | Yi Wang, Jian Zhang, Yangzi Liu, Xiaoyan Luo, Weiping Deng. Palladium-Catalyzed Asymmetric [3+4] Cycloadditions for the Construction of Cyclohepta[b]indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2864-2877. |
[13] | Fen Huang, Weiwei Luo, Jun Zhou. Research Progress of Polychloroalkylation Based on C—H Bond Cleavage [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2368-2390. |
[14] | Deliang Kong, Wen Dai, Yiling Zhao, Yilin Chen, Hongping Zhu. Study on Oxidative Cycloaddition Reactions of Amidinatoboryl-aminosilylenes toward Ketone and Diketone Molecules [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1843-1851. |
[15] | Fang Wei, Xin Yu, Qiang Xiao. Advances in C—N3 Retention Reactions Involving Organic Azides [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1365-1385. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||