Reviews

Boron-Based Lewis Acid Transition Metal Complexes as Potential Bifunctional Catalysts

  • Li Yinwu ,
  • Zhang Jianyu ,
  • Shu Siwei ,
  • Shao Youxiang ,
  • Liu Yan ,
  • Ke Zhuofeng
Expand
  • a Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275;
    b School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006

Received date: 2017-03-01

  Revised date: 2017-05-27

  Online published: 2017-07-14

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21673301, 21473261, 21502023) and the Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2015A030306027).

Abstract

Lewis acid-transition metal (LA-TM) complexes, with the LA site functions as an electron acceptor and the TM center functions as an electron donor, have been emerging as a new type of bifunctional catalysts lately, different from traditional transition metal bifunctional catalysts. Due to their rapid developments recently, the boron-based LA-TM complexes, which are divided into three major types, the sp3, sp2, and sp boron-based complexes, are reviewed in this paper according to their binding features. Reactions promoted by this new type of LA-TM bifunctional catalysts have been surveyed, including migration reactions, activation of H-H/E-H/E-E bonds, hydrogenations, hydrosilylations, and transfer dehydrogenation reactions etc. This overview of boron-based LA-TM complexes could provide valuable information to explore the new horizon in LA-TM bifunctional catalysis.

Cite this article

Li Yinwu , Zhang Jianyu , Shu Siwei , Shao Youxiang , Liu Yan , Ke Zhuofeng . Boron-Based Lewis Acid Transition Metal Complexes as Potential Bifunctional Catalysts[J]. Chinese Journal of Organic Chemistry, 2017 , 37(9) : 2187 -2202 . DOI: 10.6023/cjoc201703002

References

[1] (a) Hu, X. L. Chem. Sci. 2011, 2, 1867.
(b) Khusnutdinova, J. R.; Milstein, D. Angew. Chem., Int. Ed. 2015, 54, 12236.
[2] (a) Kubas, G. J. Chem. Rev. 2007, 107, 4152. 10, 701.
[3] (a) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
(b) Kuwata, S.; Ikariya, T. Chem. Commun. 2014, 50, 14290.
[4] (a) Szostak, J. W. Medicina-Buenos Aires 2016, 76, 199.
(b) Szostak, J. W. Nature 2009, 459, 171.
(c) Szostak, J. W.; Bartel, D. P.; Luisi, P. L. Nature 2001, 409, 387.
(d) Mansy, S. S.; Szostak, J. W. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13351.
[5] (a) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Chem. Rev. 2007, 107, 4273.
(b) Silakov, A.; Wenk, B.; Reijerse, E.; Lubitz, W. Phys. Chem. Chem. Phys. 2009, 11, 6592.
(c) Barton, B. E.; Olsen, M. T.; Rauchfuss, T. B. J. Am. Chem. Soc. 2008, 130, 16834.
(d) Gordon, J. C.; Kubas, G. J. Organometallics 2010, 29, 4682.
[6] (a) Hou, C.; Jiang, J. X.; Li, Y. W.; Zhao, C. Y.; Ke, Z. F. ACS Catal. 2017, 7, 786.
(b) Hou, C.; Zhang, Z. H.; Zhao, C. Y.; Ke, Z. F. Inorg. Chem. 2016, 55, 6539.
[7] Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.
[8] (a) Morris, R. H. Chem. Rec. 2016, 16, 2644.
(b) Annibale, V. T.; Song, D. T. RSC Adv. 2013, 3, 11432.
(c) Zhao, B. G.; Han, Z. B.; Ding, K. L. Angew. Chem., Int. Ed. 2013, 52, 4744.
(d) DuBois, D. L. Inorg. Chem. 2014, 53, 3935.
(e) Crabtree, R. H. New J. Chem. 2011, 35, 18.
(f) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Chem. Rev. 2013, 113, 6621.
(g) Fujita, E.; Muckerman, J. T.; Himeda, Y. Biochim. Biophys. Acta, Bioenerg. 2013, 1827, 1031.
[9] (a) Owen, G. R. Chem. Commun. 2016, 52, 10712.
(b) Bouhadir, G.; Bourissou, D. Chem. Soc. Rev. 2016, 45, 1065.
(c) Dang, L.; Lin, Z.; Marder, T. B. Chem. Commun. 2009, 3987.
(d) Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev. 2010, 110, 3924.
(e) Braunschweig, H.; Colling, M. Coord. Chem. Rev. 2001, 223, 1.
[10] (a) Devillard, M.; Bouhadir, G.; Bourissou, D. Angew. Chem., Int. Ed. 2015, 54, 730.
(b) Li, Y. W.; Hou, C.; Jiang, J. X.; Zhang, Z. H.; Zhao, C. Y.; Page, A. J.; Ke, Z. F. ACS Catal. 2016, 6, 1655.
[11] (a) Tsoureas, N.; Hamilton, A.; Haddow, M. F.; Harvey, J. N.; Orpen, A. G.; Owen, G. R. Organometallics 2013, 32, 2840.
(b) Harman, W. H.; Lin, T. P.; Peters, J. C. Angew. Chem., Int. Ed. 2014, 53, 1081.
(c) Zeng, G.; Sakaki, S. Inorg. Chem. 2013, 52, 2844.
[12] (a) Harman, W. H.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 5080.
(b) Fong, H.; Moret, M. E.; Lee, Y.; Peters, J. C. Organometallics 2013, 32, 305.
(c) Lin, T. P.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 15310.
[13] Rudd, P. A.; Liu, S. S.; Gagliardi, L.; Young, V. G.; Lu, C. C. J. Am. Chem. Soc. 2011, 133, 20724.
[14] Cammarota, R. C.; Lu, C. C. J. Am. Chem. Soc. 2015, 137, 12486.
[15] Riddlestone, I. M.; Rajabi, N. A.; Lowe, J. P.; Mahon, M. F.; Macgregor, S. A.; Whittlesey, M. K. J. Am. Chem. Soc. 2016, 138, 11081.
[16] Yang, H. F.; Gabbai, F. P. J. Am. Chem. Soc. 2015, 137, 13425.
[17] Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 1999, 38, 2759.
[18] Tsoureas, N.; Kuo, Y. Y.; Haddow, M. F.; Owen, G. R. Chem. Commun. 2011, 47, 484.
[19] (a) Blagg, R. J.; Charmant, J. P. H.; Connelly, N. G.; Haddow, M. F.; Orpen, A. G. Chem. Commun. 2006, 2350.
(b) Landry, V. K.; Melnick, J. G.; Buccella, D.; Pang, K. L.; Ulichny, J. C.; Parkin, G. Inorg. Chem. 2006, 45, 2588.
(c) Senda, S.; Ohki, Y.; Hirayama, T.; Toda, D.; Chen, J. L.; Matsumoto, T.; Kawaguchi, H.; Tatsumi, K. Inorg. Chem. 2006, 45, 9914.
(d) Crossley, I. R.; Foreman, M. R. S. J.; Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J.; Willis, A. C. Organometallics 2008, 27, 381.
(e) Crossley, I. R.; Hill, A. F. Dalton Trans. 2008, 201.
(f) Crossley, I. R.; Hill, A. F.; Willis, A. C. Organometallics 2008, 27, 312.
(g) Pang, K. L.; Tanski, J. M.; Parkin, G. Chem. Commun. 2008, 1008.
(h) Blagg, R. J.; Adams, C. J.; Charmant, J. P. H.; Connelly, N. G.; Haddow, M. F.; Hamilton, A.; Knight, J.; Orpen, A. G.; Ridgway, B. M. Dalton Trans. 2009, 8724.
(i) Rudolf, G. C.; Hamilton, A.; Orpen, A. G.; Owen, G. R. Chem. Commun. 2009, 553.
(j) Crossley, I. R.; Hill, A. F.; Willis, A. C. Organometallics 2010, 29, 326.
(k) Lopez-Gomez, M. J.; Connelly, N. G.; Haddow, M. F.; Hamilton, A.; Orpen, A. G. Dalton Trans. 2010, 39, 5221.
[20] (a) Tsoureas, N.; Bevis, T.; Butts, C. P.; Hamilton, A.; Owen, G. R. Organometallics 2009, 28, 5222.
(b) Tsoureas, N.; Haddow, M. F.; Hamilton, A.; Owen, G. R. Chem. Commun. 2009, 2538.
(c) Blagg, R. J.; Connelly, N. G.; Haddow, M. F.; Hamilton, A.; Lusi, M.; Orpen, A. G.; Ridgway, B. M. Dalton Trans. 2010, 39, 11616.
[21] Lopez-Gomez, M. J.; Connelly, N. G.; Haddow, M. F.; Hamilton, A.; Lusi, M.; Baisch, U.; Orpen, A. G. Dalton Trans. 2011, 40, 4647.
[22] Figueroa, J. S.; Melnick, J. G.; Parkin, G. Inorg. Chem. 2006, 45, 7056.
[23] Mihalcik, D. J.; White, J. L.; Tanski, J. M.; Zakharov, L. N.; Yap, G. P. A.; Incarvito, C. D.; Rheingold, A. L.; Rabinovich, D. Dalton Trans. 2004, 1626.
[24] Crossley, I. R.; Foreman, M. R. S.; Hill, A. F.; White, A. J. P.; Williams, D. J. Chem. Commun. 2005, 221.
[25] Bontemps, S.; Bouhadir, G.; Dyer, P. W.; Miqueu, K.; Bourissou, D. Inorg. Chem. 2007, 46, 5149.
[26] (a) Bontemps, S.; Bouhadir, G.; Gu, W.; Mercy, M.; Chen, C. H.; Foxman, B. M.; Maron, L.; Ozerov, O. V.; Bourissou, D. Angew. Chem., Int. Ed. 2008, 47, 1481.
(b) Sircoglou, M.; Bontemps, S.; Bouhadir, G.; Saffon, N.; Miqueu, K.; Gu, W. X.; Mercy, M.; Chen, C. H.; Foxman, B. M.; Maron, L.; Ozerov, O. V.; Bourissou, D. J. Am. Chem. Soc. 2008, 130, 16729.
(c) Kameo, H.; Hashimoto, Y.; Nakazawa, H. Organometallics 2012, 31, 4251.
(d) Suess, D. L. M.; Tsay, C.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 14158.
[27] Moret, M. E.; Peters, J. C. Angew. Chem., Int. Ed. 2011, 50, 2063.
[28] Sircoglou, M.; Bontemps, S.; Mercy, M.; Saffon, N.; Takahashi, M.; Bouhadir, G.; Maron, L.; Bourissou, D. Angew. Chem., Int. Ed. 2007, 46, 8583.
[29] Boone, M. P.; Stephan, D. W. J. Am. Chem. Soc. 2013, 135, 8508.
[30] (a) Schindler, T.; Lux, M.; Peters, M.; Scharf, L. T.; Osseili, H.; Maron, L.; Tauchert, M. E. Organometallics 2015, 34, 1978.
(b) Nesbit, M. A.; Suess, D. L. M.; Peters, J. C. Organometallics 2015, 34, 4741.
(c) Suess, D. L. M.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 12580.
(d) Sircoglou, M.; Bontemps, S.; Mercy, M.; Miqueu, K.; Ladeira, S.; Saffon, N.; Maron, L.; Bouhadir, G.; Bourissou, D. Inorg. Chem. 2010, 49, 3983.
(e) Kameo, H.; Nakazawa, H. Organometallics 2012, 31, 7476.
(f) Conifer, C. M.; Law, D. J.; Sunley, G. J.; White, A. J. P.; Britovsek, G. J. P. Organometallics 2011, 30, 4060.
[31] Bontemps, S.; Bouhadir, G.; Miqueu, K.; Bourissou, D. J. Am. Chem. Soc. 2006, 128, 12056.
[32] Cowie, B. E.; Emslie, D. J. H. Chem.-Eur. J. 2014, 20, 16899.
[33] Barnett, B. R.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S. J. Am. Chem. Soc. 2014, 136, 10262.
[34] (a) Braunschweig, H.; Radacki, K.; Seeler, F.; Whittell, G. R. Organometallics 2004, 23, 4178.
(b) Braunschweig, H.; Radacki, K.; Seeler, F.; Whittell, G. R., Organometallics 2006, 25, 4605.
[35] Bissinger, P.; Braunschweig, H.; Damme, A.; Dewhurst, R. D.; Kraft, K.; Kramer, T.; Radacki, K. Chem.-Eur. J. 2013, 19, 13402.
[36] Vondung, L.; Frank, N.; Fritz, M.; Alig, L.; Langer, R. Angew. Chem., Int. Ed. 2016, 55, 14448.
[37] Frank, N.; Hanau, K.; Flosdorf, K.; Langer, R., Dalton Trans. 2013, 42, 11252.
[38] MacMillan, S. N.; Harman, W. H.; Peters, J. C. Chem. Sci. 2014, 5, 590.
[39] Boone, M. P.; Stephan, D. W. Chem.-Eur. J. 2014, 20, 3333.
[40] Suess, D. L. M.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 4938.
[41] Inagaki, F.; Matsumoto, C.; Okada, Y.; Maruyama, N.; Mukai, C., Angew. Chem., Int. Ed. 2015, 54, 818.
[42] (a) Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84.
(b) Anderson, J. S.; Moret, M. E.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 534.
(c) Moret, M. E.; Peters, J. C. J. Am. Chem. Soc. 2011, 133, 18118.
[43] (a) Baker, R. T.; Ovenall, D. W.; Calabrese, J. C.; Westcott, S. A.; Taylor, N. J.; Williams, I. D.; Marder, T. B. J. Am. Chem. Soc. 1990, 112, 9399.
(b) Knorr, J. R.; Merola, J. S. Organometallics 1990, 9, 3008.
[44] Hartwig, J. F.; Huber, S. J. Am. Chem. Soc. 1993, 115, 4908.
[45] Aldridge, S.; Al-Fawaz, A.; Calder, R. J.; Dickinson, A. A.; Willock, D. J.; Light, M. E.; Hursthouse, M. B. Chem. Commun. 2001, 1846.
[46] Wadepohl, H.; Arnold, U.; Pritzkow, H. Angew. Chem., Int. Ed. 1997, 36, 974.
[47] Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. Organometallics 2002, 21, 4862.
[48] (a) Aldridge, S.; Jones, C.; Gans-Eichler, T.; Stasch, A.; Kays, D. L.; Coombs, N. D.; Willock, D. J. Angew. Chem., Int. Ed. 2006, 45, 6118.
(b) De, S.; Pierce, G. A.; Vidovic, D.; Kays, D. L.; Coombs, N. D.; Jemmis, E. D.; Aldridge, S. Organometallics 2009, 28, 2961.
(c) Pierce, G. A.; Vidovic, D.; Kays, D. L.; Coombs, N. D.; Thompson, A. L.; Jemmis, E. D.; De, S.; Aldridge, S. Organometallics 2009, 28, 2947.
[49] Braunschweig, H.; Radacki, K.; Uttinger, K. Chem.-Eur. J. 2008, 14, 7858.
[50] (a) Curtis, D.; Lesley, M. J. G.; Norman, N. C.; Orpen, A. G.; Starbuck, J. J. Chem. Soc., Dalton Trans. 1999, 1687.
(b) Addy, D. A.; Phillips, N.; Pierce, G. A.; Vidovic, D.; Kramer, T.; Mallick, D.; Jemmis, E. D.; Reid, G.; Aldridge, S. Organometallics 2012, 31, 1092.
[51] (a) Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2007, 46, 6710.
(b) Asay, M.; Jones, C.; Driess, M. Chem. Rev. 2011, 111, 354.
(c) Frank, R.; Howell, J.; Campos, J.; Tirfoin, R.; Phillips, N.; Zahn, S.; Mingos, D. M. P.; Aldridge, S. Angew. Chem., Int. Ed. 2015, 54, 9586.
(d) Lu, W.; Hu, H. T.; Li, Y. X.; Ganguly, R.; Kinjo, R. J. Am. Chem. Soc. 2016, 138, 6650.
[52] Onozawa, S.-y.; Hatanaka, Y.; Sakakura, T.; Shimada, S.; Tanaka, M. Organometallics 1996, 15, 5450.
[53] (a) Borner, C.; Brandhorst, K.; Kleeberg, C. Dalton Trans. 2015, 44, 8600.
(b) Clark, G. R.; Irvine, G. J.; Roper, W. R.; Wright, L. J. J. Organomet. Chem. 2003, 680, 81.
(c) Habereder, T.; Noth, H. Appl. Organomet. Chem. 2003, 17, 525.
(d) Onozawa, S.; Tanaka, M. Organometallics 2001, 20, 2956.
(e) Okuno, Y.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2011, 50, 920;
(f) Kajiwara, T.; Terabayashi, T.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2008, 47, 6606.
(g) Terabayashi, T.; Kajiwara, T.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14162.
[54] (a) Kawamura, K.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 8422.
(b) Aldridge, S.; Calder, R. J.; Baghurst, R. E.; Light, M. E.; Hursthouse, M. B. J. Organomet. Chem. 2002, 649, 9.
(c) Braunschweig, H.; Bertermann, R.; Brenner, P.; Burzler, M.; Dewhurst, R. D.; Radacki, K.; Seeler, F. Chem.-Eur. J. 2011, 17, 11828.
(d) Esteruelas, M. A.; Lopez, A. M.; Mora, M.; Onate, E. Chem. Commun. 2013, 49, 7543.
[55] Braunschweig, H.; Chiu, C. W.; Radacki, K.; Brenner, P. Chem. Commun. 2010, 46, 916.
[56] Braunschweig, H.; Fernandez, I.; Frenking, G.; Radacki, K.; Seeler, F. Angew. Chem., Int. Ed. 2007, 46, 5215.
[57] (a) Segawa, Y.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 9201.
(b) Segawa, Y.; Yamashita, M.; Nozaki, K. Organometallics 2009, 28, 6234.
[58] Miyada, T.; Kwan, E. H.; Yamashita, M. Organometallics 2014, 33, 6760.
[59] Kwan, E. H.; Kawai, Y. J.; Kamakura, S.; Yamashita, M. Dalton Trans. 2016, 45, 15931.
[60] Hasegawa, M.; Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2012, 51, 6956.
[61] Ogawa, H.; Yamashita, M. Dalton Trans. 2013, 42, 625.
[62] Lin, T. P.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 13672.
[63] Tanoue, K.; Yamashita, M. Organometallics 2015, 34, 4011.
[64] Braunschweig, H.; Kollann, C.; Englert, U. Angew. Chem., Int. Ed. 1998, 37, 3179.
[65] Braunschweig, H.; Colling, M.; Kollann, C.; Stammler, H. G.; Neumann, B. Angew. Chem., Int. Ed. 2001, 40, 2298.
[66] Braunschweig, H.; Colling, M.; Hu, C. H.; Radacki, K. Angew. Chem., Int. Ed. 2003, 42, 205.
[67] Blank, B.; Colling-Hendelkens, M.; Kollann, C.; Radacki, K.; Rais, D.; Uttinger, K.; Whittell, G. R.; Braunschweig, H. Chem.-Eur. J. 2007, 13, 4770.
[68] Niemeyer, J.; Addy, D. A.; Riddlestone, I.; Kelly, M.; Thompson, A. L.; Vidovic, D.; Aldridge, S. Angew. Chem., Int. Ed. 2011, 50, 8908.
[69] O'Neill, M.; Addy, D. A.; Riddlestone, I.; Kelly, M.; Phillips, N.; Aldridge, S. J. Am. Chem. Soc. 2011, 133, 11500.
[70] Braunschweig, H.; Radacki, K.; Rais, D.; Schneider, A.; Seeler, F. J. Am. Chem. Soc. 2007, 129, 10350.
[71] Coombs, D. L.; Aldridge, S.; Jones, C.; Willock, D. J. J. Am. Chem. Soc. 2003, 125, 6356.
[72] Braunschweig, H.; Burzler, M.; Kupfer, T.; Radacki, K.; Seeler, F. Angew. Chem., Int. Ed. 2007, 46, 7785.
[73] Braunschweig, H.; Ye, Q.; Radacki, K. Chem. Commun. 2012, 48, 2701.
[74] Braunschweig, H.; Colling, M.; Kollann, C.; Merz, K.; Radacki, K. Angew. Chem., Int. Ed. 2001, 40, 4198.
[75] Braunschweig, H.; Kupfer, T.; Radacki, K.; Schneider, A.; Seeler, F.; Uttinger, K.; Wu, H. J. Am. Chem. Soc. 2008, 130, 7974.
[76] Braunschweig, H.; Radacki, K.; Rais, D.; Uttinger, K. Angew. Chem., Int. Ed. 2006, 45, 162.
[77] (a) Braunschweig, H.; Radacki, K.; Schneider, A. Science 2010, 328, 345.
(b) Braunschweig, H.; Radacki, K.; Schneider, A. Chem. Commun. 2010, 46, 6473.
[78] Alcaraz, G.; Helmstedt, U.; Clot, E.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2008, 130, 12878.
[79] Addy, D. A.; Bates, J. I.; Kelly, M. J.; Riddlestone, I. M.; Aldridge, S. Organometallics 2013, 32, 1583
(b) Franssen, N. M. G.; Walters, A. J. C.; Reek, J. N. H.; de Bruin, B. Catal. Sci. Technol. 2011, 1, 153.
(c) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
(d) Gupta, K. C.; Sutar, A. K. Coord. Chem. Rev. 2008, 252, 1420.
(e) Wang, X. Y.; Zheng, X. M.; Hou, Z. Y. Chin. Chem. Lett. 1999,

Outlines

/