Chinese Journal of Organic Chemistry >
Folding and Aggregation of Oligoviologens in Water and Cucurbit[n]uril (n=7, 8) Modulation
Received date: 2021-08-17
Revised date: 2021-10-27
Online published: 2021-11-03
Supported by
National Natural Science Foundation of China(21890732); National Natural Science Foundation of China(21890730); National Natural Science Foundation of China(21921003)
To study the conformations and aggregation of linear viologen radical cation-incorporated molecules in water, a series of water-soluble oligoviologens with different length and linkers were prepared. 1H NMR experiments in deuteroxide showed that cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) encapsulate their p-xylylene linkers instead of the bipyridinium units. UV-vis absorption experiments indicated that in the aqueous solution of sodium dithionite the viologen units of the oligomers were reduced to the radical cation species which were driven to dimerize through pleated conformations, leading to the formation of trisradical cation species. Dynamic light scattering experiments revealed that the foldamer dimers further aggregated to afford nanoscale particles. Adding CB[7] decomposed all the aggregated foldamer nanoparticles through 1:1 encapsulation of the viologen radical cation units, whereas the addition of CB[8] broke the foldamers and their large aggregates through 1:2 encapsulation of the viologen radical cations. Introducing a rigid linker to the linear viologen molecule could further enhance their stacking in the radical cation state. Although the folding and dimerization of linear viologen radical cation molecules have been established in acetonitrile in the literature, this study demonstrates that in water such multiple viologen radical cation molecules not only undergo folding to form stable dimers, but also further aggregate to give rise to nanoscale particles.
Wen-Chang Peng , Hui Wang , Dan-Wei Zhang , Zhan-Ting Li . Folding and Aggregation of Oligoviologens in Water and Cucurbit[n]uril (n=7, 8) Modulation[J]. Chinese Journal of Organic Chemistry, 2022 , 42(3) : 863 -870 . DOI: 10.6023/cjoc202108025
[1] | Creighton, T. E. Proteins: Structures and Molecular Principles, 2nd ed., Freeman, New York, 1993. |
[2] | Saenger, W. Principles of Nucleic Acid Structure, Springer-Verlag, New York, 1984. |
[3] | (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. |
[3] | (b) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893. |
[3] | (c) Huc, I. Eur. J. Org. Chem. 2004, 1, 17. |
[3] | (d) Gong, B. Acc. Chem. Res. 2008, 41, 1376. |
[3] | (e) Li, X.; Wu, Y.-D.; Yang, D. Acc. Chem. Res. 2008, 41, 1428. |
[3] | (f) Juwarker, H.; Suk, J.; Jeong, K.-S. Chem. Soc. Rev. 2009, 38, 3316. |
[3] | (g) Gan, Q.; Wang, Y.; Jiang, H. Curr. Org. Chem. 2011, 15, 1293. |
[3] | (h) Zhao, Y.; Cho, H.; Widanapathirana, L.; Zhang, S. Acc. Chem. Res. 2013, 46, 2763. |
[3] | (i) Nair, R. V.; Vijayadas, K. N.; Roy, A.; Sanjayan, G. J. Eur. J. Org. Chem. 2014, 35, 7763. |
[3] | (j) Huo, Y.-P.; Zeng, H.-Q. Acc. Chem. Res. 2016, 49, 922. |
[3] | (k) Shigeno, M.; Kushida, Y.; Yamaguchi, M. Chem. Commun. 2016, 52, 4955. |
[3] | (l) Zheng, D.; Yu, C.-Y.; Zheng, L.; Zhan, Y.-L.; Jiang, H. Chin. Chem. Lett. 2020, 31, 673. |
[4] | (a) Juwarker, H.; Jeong, K.-S. Chem. Soc. Rev. 2010, 39, 3664. |
[4] | (b) Ferrand, Y.; Huc, I. Acc. Chem. Res. 2018, 51, 970. |
[4] | (c) Zhao, Y. Curr. Opin. Colloid Interface Sci. 2007, 12, 92. |
[5] | (a) Xin, P.-Y.; Zhu, P.-P.; Su, P.; Hou, J.-L.; Li, Z.-T. J. Am. Chem. Soc. 2014, 136, 1307. |
[5] | (b) Zhang, D.-W.; Wang, H.; Li, Z.-T. Prog. Chem. 2020, 32, 1665. |
[5] | (c) Lang, C.; Li, W.-F.; Dong, Z.-Y.; Zhang, X.; Yang, F.-H.; Yang, B.; Deng, X.-L.; Zhang, C.-Y.; Xu, J.-Y.; Liu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 9723. |
[5] | (d) Chen, F.; Shen, J.; Li, N.; Roy, A.; Ye, R.-J.; Ren, C.-L.; Zeng, H.-Q. Angew. Chem., Int. Ed. 2020, 59, 1440. |
[6] | (a) Khan, A.; Kaiser, C.; Hecht, S. Angew. Chem., Int. Ed. 2006, 45, 12, 1878. |
[6] | (b) Zhang, K.-D.; Zhao, X.; Wang, G.-T.; Liu, Y.; Zhang, Y.; Lu, H.-J.; Jiang, X.-K.; Li, Z.-T. Angew. Chem., nt. Ed. 2011, 50, 9866. |
[6] | (c) Chen, L.; Wang, H.; Zhang, D.-W.; Zhou, Y.-M.; Li, Z.-T. Angew. Chem., Int. Ed. 2015, 54, 4028. |
[6] | (d) Wang, Y.; Bie, F.-S.; Jiang, H. Org. Lett. 2010, 12, 3630. |
[6] | (e) Parks, F. C.; Liu, Y.; Debnath, S.; Stutsman, S. R.; Raghavachari, K.; Flood, A. H. J. Am. Chem. Soc. 2018, 140, 17711. |
[6] | (f) Pramanik, S.; Kauffmann, B.; Hecht, S.; Ferrand, Y.; Huc, I. Chem. Commun. 2021, 57, 93. |
[7] | (a) Stone, M. T.; Moore, J. S. Org. Lett. 2004, 6, 469. |
[7] | (b) Sinkeldam, R. W.; van Houtem, M. H. C. J.; Pieterse, K.; Vekemans, J. A. J. M.; Meijer, E. W. Chem.-Eur. J. 2006, 12, 6129. |
[7] | (c) Gillies, E. R.; Deiss, F.; Staedel, C.; Schmitter, J.-M.; Huc, I. Angew. Chem., Int. Ed. 2007, 46, 4081. |
[7] | (d) Wang, Y.; Li, F.; Han, Y.-M.; Wang, F.-Y.; Jiang, H. Chem. Eur. J. 2009, 15, 9424. |
[7] | (e) Suk, J.-M.; Jeong, K.-S. J. Am. Chem. Soc. 2008, 130, 11868. |
[7] | (f) Zhang, P.; Wang, Z.-K.; Zhang, L.; Wang, H.; Zhang, D.-W.; Hou, J.-L.; Li, Z.-T. Chin. J. Chem. 2016, 34, 678. |
[7] | (g) Shang, J.; Zhao, W.; Li, X.-C.; Wang, Y.; Jiang, H. Chem. Commun. 2016, 52, 4505. |
[7] | (h) Ikkanda, B. A.; Iverson, B. L. Chem. Commun. 2016, 52, 7752. |
[7] | (i) Borissov, A.; Marques, I.; Lim, J. Y. C.; Felix, V.; Smith, Ma. D.; Beer, P. D. J. Am. Chem. Soc. 2019, 141, 4119. |
[8] | (a) Chen, L.; Wang, H.; Zhang, D.-W.; Zhou, Y.-M.; Li, Z.-T. Angew. Chem., Int. Ed. 2015, 54, 4028. |
[8] | (b) Zhang, Y.-C.; Zhang, D.-W.; Wang, H.; Zhou, Y.-M.; Li, Z.-T. Polym. Chem. 2015, 6, 4404. |
[8] | (c) Chen, L.; Wang, H.; Zhang, D.-W.; Zhou, Y.-M.; Li, Z.-T. Tetrahedron 2017, 73, 1841. |
[8] | (d) Qi, Q.; Yang, B.; Xi, C.-G.; Yang, X.-R.; Zhang, D.-W.; Liu, S.-M.; Li, Z.-T. ChemistrySelect 2016, 1, 6792. |
[9] | Wang, Y.-P.; Frasconi, M.; Liu, W.-G.; Liu, Z.-C.; Sarjeant, A. A.; Nassar, M. S.; Botros, Y. Y.; Goddard, W. A.; Stoddart, J. F. J. Am. Chem. Soc. 2015, 137, 876. |
[10] | (a) Zhang, D.-W.; Tian, J.; Chen, L.; Zhang, L.; Li, Z.-T. Chem. Asian J. 2015, 10, 56. |
[10] | (b) Chen, L.; Zhang, Y.-C.; Wang, W.-K.; Tian, J.; Zhang, L.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Chin. Chem. Lett. 2015, 26, 811. |
[10] | (c) Zhou, X.-H.; Fan, Y.; Li, W.-X.; Zhang, X.; Liang, R.-R.; Lin, F.; Zhan, T.-G.; Jiecheng Cui, J.; Liu, L.-J.; Zhao, X. Zhang, K.-D. Chin. Chem. Lett. 2020, 31, 1757. |
[11] | Wang, Y.-P.; Frasconi, M.; Liu, W.-G.; Sun, J.-L.; Wu, Y.-L.; Nassar, M. S.; Botros, Y. Y.; Goddard, W. A.; Wasielewski, M. R.; Stoddart, J. F. ACS Cent. Sci. 2016, 2, 89. |
[12] | Zhou, C.; Tian, J.; Wang, J.-L.; Zhang, D.-W.; Zhao, X.; Liu, Y.; Li, Z.-T. Polym. Chem. 2014, 5, 341. |
[13] | Liu, H. Supramol. Chem. 2019, 31, 451. |
[14] | (a) Liu, X.-B.; Lin, J.-L.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Chin. J. Org. Chem. 2020, 40, 663 (in Chinese) |
[14] | (刘旭波, 林佳乐, 王辉, 张丹维, 黎占亭, 有机化学, 2020, 40, 663.) |
[14] | (b) Tian, X.; Zuo, M.; Niu, P.; Wang, K.; Hu, X. Chin. J. Org. Chem. 2020, 40, 1823. (in Chinese) |
[14] | (田雪琪, 左旻瓒, 牛蓬勃, 王开亚, 胡晓玉, 有机化学, 2020, 40, 1823.) |
[15] | (a) Correia, H. D.; Chowdhury, S.; Ramos, A. P.; Guy, L.; Demets, G. J.-F.; Bucher, C. Polym. Int. 2019, 68, 572. |
[15] | (b) Zhou, J.; Hou, S.; Zhang, J.; Chen, Y.; Chen, H.; Tan, Y. Chin. Chem. Lett. 2021, 32, 725. |
[15] | (c) Ong, W.; Gomez-Kaifer, M.; Kaifer, A. E. Org. Lett. 2002, 4, 1791. |
[16] | Yang, B.; Zhang, J.-W.; Yu, S.-B.; Wang, Z.-K.; Zhang, P.-Q.; Yang, X.-D.; Qi, Q.-Y.; Yang, G.-Y.; Ma, D.; Li, Z.-T. Sci. China Chem. 2021, 64, 1228. |
[17] | (a) Yin, Z.; Song, G.; Jiao, Y.; Zheng, P.; Xu, J.-F.; Zhang, X. CCS Chem. 2019, 1, 335. |
[17] | (b) Ji, Q.; Fan, L.; Liu, S.; Ye, H.; Xiang, S.; Wang, P. Chin. Chem. Lett. 2021, 10.1016/j.cclet.2021.05.036. |
[18] | Geuder, W.; Hunig, S.; Suchy, A. Tetrahedron 1986, 42, 1665. |
[19] | Yang, B.; Yu, S.-B.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Chem. Asian J. 2018, 13, 1312. |
/
〈 |
|
〉 |