ARTICLES

Synthetic and Computational Study of Four-Coordinate B,B-Diaryl 8-Aminoquinolate Complexes

  • Siyi Ding ,
  • Weisai Zu ,
  • Zongcheng Miao ,
  • Liang Xu
Expand
  • a Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi'an 710123
    b Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003
* Corresponding authors. E-mail: ;

Received date: 2021-08-20

  Revised date: 2021-10-27

  Online published: 2021-11-25

Supported by

National Natural Science Foundation of China(21901214); National Natural Science Foundation of China(21963010); Natural Science Foundation of Shaanxi Province(2020JQ-918)

Abstract

Despite the wide application of four-coordinate organoboron compounds as fluorescent materials, the synthesis of such complexes, which contain two aryl groups on the boron centers, is relatively limited by the need for sensitive organometallic reagents. Herein, using stable and commercially available aryl trifluoroborate potassium salts as complexation reagents, a series of aminoquinolate-framed diarylboron complexes, which were difficult to access previously, have been obtained in moderate to excellent yields. Furthermore, density functional theory (DFT) study of the obtained complex shows its molecular orbital distribution.

Cite this article

Siyi Ding , Weisai Zu , Zongcheng Miao , Liang Xu . Synthetic and Computational Study of Four-Coordinate B,B-Diaryl 8-Aminoquinolate Complexes[J]. Chinese Journal of Organic Chemistry, 2022 , 42(3) : 812 -818 . DOI: 10.6023/cjoc202108040

References

[1]
(a) Mellerup, S. K.; Wang, S. Trends Chem. 2019, 1, 77.
[1]
(b) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891.
[1]
(c) Chen, P.-Z.; Niu, L.-Y.; Chen, Y.-Z.; Yang, Q.-Z. Coord. Chem. Rev. 2017, 350, 196.
[1]
(d) Dou, C.; Liu, J.; Wang, L. Sci. China Chem. 2017, 60, 450.
[1]
(e) Frath, D.; Massue, J.; Ulrich, G.; Ziessel, R. Angew. Chem., nt. Ed. 2014, 53, 2290.
[1]
(f) Rao, Y.-L.; Wang, S. Inorg. Chem. 2011, 50, 12263.
[1]
(g) Jäkle, F. Chem. Rev. 2010, 110, 3985.
[1]
(h) Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem., nt. Ed. 2008, 47, 1184.
[2]
Li, D.; Zhang, H.; Wang, Y. Chem. Soc. Rev. 2013, 42, 8416.
[3]
(a) Mukherjee, S.; Thilagar, P. J. Mater. Chem. C 2016, 4, 2647.
[3]
(b) Rao, Y.-L.; Amarne, H.; Wang, S. Coord. Chem. Rev. 2012, 256, 759.
[3]
(c) Mellerup, S. K.; Wang, S. Chem. Soc. Rev. 2019, 48, 3537.
[4]
Boens, N.; Leen, V.; Dehaen, W. Chem. Soc. Rev. 2012, 41, 1130.
[5]
(a) Boens, N.; Verbelen, B.; Dehaen, W. Eur. J. Org. Chem. 2015, 2015, 6577.
[5]
(b) Lu, H.; Mack, J.; Yang, Y.; Shen, Z. Chem. Soc. Rev. 2014, 43, 4778.
[6]
(a) Liu, K.; Lalancette, R. A.; Jäkle, F. J. Am. Chem. Soc. 2017, 139, 18170.
[6]
(b) Crossley, D. L.; Goh, R.; Cid, J.; Vitorica-Yrezabal, I.; Turner, M. L.; Ingleson, M. J. Organometallics 2017, 36, 2597.
[7]
(a) Qi, Y.; Ding, N.; Wang, Z.; Xu, L.; Fang, Y. ACS Appl. Mater. Interfaces 2019, 11, 8676.
[7]
(b) Guan, C.; Huang, L.; Ren, C.; Zou, G. Org. Process Res. Dev. 2018, 22, 824.
[7]
(c) Qi, Y.; Xu, W.; Kang, R.; Ding, N.; Wang, Y.; He, G.; Fang, Y. Chem. Sci. 2018, 9, 1892.
[7]
(d) Zhu, C.; Ji, X.; You, D.; Chen, T. L.; Mu, A. U.; Barker, K. P.; Klivansky, L. M.; Liu, Y.; Fang, L. J. Am. Chem. Soc. 2018, 140, 18173.
[7]
(e) Marciasini, L.; Cacciuttolo, B.; Vaultier, M.; Pucheault, M. Org. Lett. 2015, 17, 3532.
[8]
(a) Yan, N.; Wang, F.; Wei, J.; Song, J.; Yan, L.; Luo, J.; Fang, Z.; Wang, Z.; Zhang, W.; He, G. Dyes Pigm. 2019, 166, 410.
[8]
(b) Wang, T.; Dou, C.; Liu, J.; Wang, L. Chem.-Eur. J. 2018, 24, 13043.
[8]
(c) Liu, F.; Ding, Z.; Liu, J.; Wang, L. Chem. Commun. 2017, 53, 12213.
[8]
(d) Mas-Montoya, M.; Usea, L.; Espinosa Ferao, A.; Montenegro, M. F.; Ramirez de Arellano, C.; Tarraga, A.; Rodriguez-Lopez, J. N.; Curiel, D. J. Org. Chem. 2016, 81, 3296.
[8]
(e) Pais, V. F.; Ramírez-López, P.; Romero-Arenas, A.; Collado, D.; Nájera, F.; Pérez-Inestrosa, E.; Fernández, R.; Lassaletta, J. M.; Ros, A.; Pischel, U. J. Org. Chem. 2016, 81, 9605.
[8]
(f) Wang, X.; Wu, Y.; Liu, Q.; Li, Z.; Yan, H.; Ji, C.; Duan, J.; Liu, Z. Chem. Commun. 2015, 51, 784.
[8]
(g) Fu, Y.; Qiu, F.; Zhang, F.; Mai, Y.; Wang, Y.; Fu, S.; Tang, R.; Zhuang, X.; Feng, X. Chem. Commun. 2015, 51, 5298.
[8]
(h) Suresh, D.; Gomes, C. S. B.; Lopes, P. S.; Figueira, C. A.; Ferreira, B.; Gomes, P. T.; Di Paolo, R. E.; Maçanita, A. L.; Duarte, M. T.; Charas, A.; Morgado, J.; Vila-Viçosa, D.; Calhorda, M. J. Chem. -Eur. J. 2015, 21, 9133.
[8]
(i) Zhang, Z.; Zhang, H.; Jiao, C.; Ye, K.; Zhang, H.; Zhang, J.; Wang, Y. Inorg. Chem. 2015, 54, 2652.
[8]
(j) Kubota, Y.; Niwa, T.; Jin, J.; Funabiki, K.; Matsui, M. Org. Lett. 2015, 17, 3174.
[9]
Sadu, V. S.; Bin, H. R.; Lee, D. M.; Lee, K. I. Sci. Rep. 2017, 7, 242.
[10]
Yang, K.; Zhang, G.; Song, Q. Chem. Sci. 2018, 9, 7666.
[11]
Sawazaki, T.; Shimizu, Y.; Oisaki, K.; Sohma, Y.; Kanai, M. Org. Lett. 2018, 20, 7767.
[12]
Wang, Z.; Cheng, C.; Kang, Z.; Miao, W.; Liu, Q.; Wang, H.; Hao, E. J. Org. Chem. 2019, 84, 2732.
[13]
For the photocatalytic and fluorescent properties of these complexes, see: (a) Zu, W.; Day, C.; Wei, L.; Jia, X.; Xu, L. Chem. Commun. 2020, 56, 8273.
[13]
(b) Wei, L.; Wei, Y.; Zhang, J.; Xu, L. Green Chem. 2021, 23, 4446.
[14]
Wei, L.; Zhang, J.; Xu, L. ACS Sustainable Chem. Eng. 2020, 8, 13894.
[15]
(a) Zou, X.; Xu, S. Chin. J. Org. Chem. 2021, 41, 2610. (in Chinese)
[15]
(邹晓亮, 徐森苗, 有机化学, 2021, 41, 2610.)
[15]
(b) Luo, H.; Pei, N.; Zhang, J. Chin. J. Org. Chem. 2021, 41, 2990. (in Chinese)
[15]
(罗欢欢, 裴娜, 张敬, 有机化学, 2021, 41, 2990.)
[16]
Adamo, C.; Jacquemin, D. Chem. Soc. Rev. 2013, 42, 845.
[17]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O?.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A; Gaussian, Inc.: Wallingford, CT, 2009.
[18]
(a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
[18]
(b) Mennucci, B.; Cances, E.; Tomasi, J. J. Phys. Chem. B 1997, 101, 10506.
Outlines

/