Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (3): 812-818.DOI: 10.6023/cjoc202108040 Previous Articles Next Articles
ARTICLES
收稿日期:
2021-08-20
修回日期:
2021-10-27
发布日期:
2021-11-25
通讯作者:
苗宗成, 徐亮
基金资助:
Siyi Dinga, Weisai Zub, Zongcheng Miaoa(), Liang Xub()
Received:
2021-08-20
Revised:
2021-10-27
Published:
2021-11-25
Contact:
Zongcheng Miao, Liang Xu
Supported by:
Share
Siyi Ding, Weisai Zu, Zongcheng Miao, Liang Xu. Synthetic and Computational Study of Four-Coordinate B,B-Diaryl 8-Aminoquinolate Complexes[J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 812-818.
Entry | Variations from the ‘standard’ conditions | Yieldb/% |
---|---|---|
No 4-toluenesulfonyl chloride | 5 | |
No Mn | 25 | |
No Na2CO3 | 84 | |
K2CO3 instead of Na2CO3 | 80 | |
NaHCO3 instead of Na2CO3 | 91 | |
NaOMe instead of Na2CO3 | N.D. | |
DMSO instead of CH3CN | N.D. | |
DMF instead of CH3CN | 53 | |
Toluene instead of CH3CN | Trace | |
1,4-Dioxane instead of CH3CN | 24 | |
Fe instead of Mn | 32 | |
MnCl2 instead of Mn | N.D. | |
80 ℃ instead of 130 ℃ | Trace |
Entry | Variations from the ‘standard’ conditions | Yieldb/% |
---|---|---|
No 4-toluenesulfonyl chloride | 5 | |
No Mn | 25 | |
No Na2CO3 | 84 | |
K2CO3 instead of Na2CO3 | 80 | |
NaHCO3 instead of Na2CO3 | 91 | |
NaOMe instead of Na2CO3 | N.D. | |
DMSO instead of CH3CN | N.D. | |
DMF instead of CH3CN | 53 | |
Toluene instead of CH3CN | Trace | |
1,4-Dioxane instead of CH3CN | 24 | |
Fe instead of Mn | 32 | |
MnCl2 instead of Mn | N.D. | |
80 ℃ instead of 130 ℃ | Trace |
[1] |
(a) Mellerup, S. K.; Wang, S. Trends Chem. 2019, 1, 77.
doi: 10.1016/j.trechm.2019.01.003 |
(b) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891.
doi: 10.1021/cr078381n |
|
(c) Chen, P.-Z.; Niu, L.-Y.; Chen, Y.-Z.; Yang, Q.-Z. Coord. Chem. Rev. 2017, 350, 196.
doi: 10.1016/j.ccr.2017.06.026 |
|
(d) Dou, C.; Liu, J.; Wang, L. Sci. China Chem. 2017, 60, 450.
doi: 10.1007/s11426-016-0503-x |
|
(e) Frath, D.; Massue, J.; Ulrich, G.; Ziessel, R. Angew. Chem., nt. Ed. 2014, 53, 2290.
|
|
(f) Rao, Y.-L.; Wang, S. Inorg. Chem. 2011, 50, 12263.
doi: 10.1021/ic200658v |
|
(g) Jäkle, F. Chem. Rev. 2010, 110, 3985.
doi: 10.1021/cr100026f |
|
(h) Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem., nt. Ed. 2008, 47, 1184.
|
|
[2] |
Li, D.; Zhang, H.; Wang, Y. Chem. Soc. Rev. 2013, 42, 8416.
doi: 10.1039/c3cs60170f |
[3] |
(a) Mukherjee, S.; Thilagar, P. J. Mater. Chem. C 2016, 4, 2647.
doi: 10.1039/C5TC02406D pmid: 31070642 |
(b) Rao, Y.-L.; Amarne, H.; Wang, S. Coord. Chem. Rev. 2012, 256, 759.
doi: 10.1016/j.ccr.2011.11.009 pmid: 31070642 |
|
(c) Mellerup, S. K.; Wang, S. Chem. Soc. Rev. 2019, 48, 3537.
doi: 10.1039/c9cs00153k pmid: 31070642 |
|
[4] |
Boens, N.; Leen, V.; Dehaen, W. Chem. Soc. Rev. 2012, 41, 1130.
doi: 10.1039/c1cs15132k pmid: 21796324 |
[5] |
(a) Boens, N.; Verbelen, B.; Dehaen, W. Eur. J. Org. Chem. 2015, 2015, 6577.
doi: 10.1002/ejoc.201500682 |
(b) Lu, H.; Mack, J.; Yang, Y.; Shen, Z. Chem. Soc. Rev. 2014, 43, 4778.
doi: 10.1039/C4CS00030G |
|
[6] |
(a) Liu, K.; Lalancette, R. A.; Jäkle, F. J. Am. Chem. Soc. 2017, 139, 18170.
doi: 10.1021/jacs.7b11062 |
(b) Crossley, D. L.; Goh, R.; Cid, J.; Vitorica-Yrezabal, I.; Turner, M. L.; Ingleson, M. J. Organometallics 2017, 36, 2597.
doi: 10.1021/acs.organomet.7b00188 |
|
[7] |
(a) Qi, Y.; Ding, N.; Wang, Z.; Xu, L.; Fang, Y. ACS Appl. Mater. Interfaces 2019, 11, 8676.
doi: 10.1021/acsami.8b21617 pmid: 26183591 |
(b) Guan, C.; Huang, L.; Ren, C.; Zou, G. Org. Process Res. Dev. 2018, 22, 824.
doi: 10.1021/acs.oprd.8b00109 pmid: 26183591 |
|
(c) Qi, Y.; Xu, W.; Kang, R.; Ding, N.; Wang, Y.; He, G.; Fang, Y. Chem. Sci. 2018, 9, 1892.
doi: 10.1039/C7SC05243J pmid: 26183591 |
|
(d) Zhu, C.; Ji, X.; You, D.; Chen, T. L.; Mu, A. U.; Barker, K. P.; Klivansky, L. M.; Liu, Y.; Fang, L. J. Am. Chem. Soc. 2018, 140, 18173.
doi: 10.1021/jacs.8b11337 pmid: 26183591 |
|
(e) Marciasini, L.; Cacciuttolo, B.; Vaultier, M.; Pucheault, M. Org. Lett. 2015, 17, 3532.
doi: 10.1021/acs.orglett.5b01620 pmid: 26183591 |
|
[8] |
(a) Yan, N.; Wang, F.; Wei, J.; Song, J.; Yan, L.; Luo, J.; Fang, Z.; Wang, Z.; Zhang, W.; He, G. Dyes Pigm. 2019, 166, 410.
doi: 10.1016/j.dyepig.2019.03.057 pmid: 29907978 |
(b) Wang, T.; Dou, C.; Liu, J.; Wang, L. Chem.-Eur. J. 2018, 24, 13043.
doi: 10.1002/chem.201802496 pmid: 29907978 |
|
(c) Liu, F.; Ding, Z.; Liu, J.; Wang, L. Chem. Commun. 2017, 53, 12213.
doi: 10.1039/C7CC07494H pmid: 29907978 |
|
(d) Mas-Montoya, M.; Usea, L.; Espinosa Ferao, A.; Montenegro, M. F.; Ramirez de Arellano, C.; Tarraga, A.; Rodriguez-Lopez, J. N.; Curiel, D. J. Org. Chem. 2016, 81, 3296.
doi: 10.1021/acs.joc.6b00265 pmid: 29907978 |
|
(e) Pais, V. F.; Ramírez-López, P.; Romero-Arenas, A.; Collado, D.; Nájera, F.; Pérez-Inestrosa, E.; Fernández, R.; Lassaletta, J. M.; Ros, A.; Pischel, U. J. Org. Chem. 2016, 81, 9605.
doi: 10.1021/acs.joc.6b01569 pmid: 29907978 |
|
(f) Wang, X.; Wu, Y.; Liu, Q.; Li, Z.; Yan, H.; Ji, C.; Duan, J.; Liu, Z. Chem. Commun. 2015, 51, 784.
doi: 10.1039/C4CC07451C pmid: 29907978 |
|
(g) Fu, Y.; Qiu, F.; Zhang, F.; Mai, Y.; Wang, Y.; Fu, S.; Tang, R.; Zhuang, X.; Feng, X. Chem. Commun. 2015, 51, 5298.
doi: 10.1039/C4CC08551E pmid: 29907978 |
|
(h) Suresh, D.; Gomes, C. S. B.; Lopes, P. S.; Figueira, C. A.; Ferreira, B.; Gomes, P. T.; Di Paolo, R. E.; Maçanita, A. L.; Duarte, M. T.; Charas, A.; Morgado, J.; Vila-Viçosa, D.; Calhorda, M. J. Chem. -Eur. J. 2015, 21, 9133.
doi: 10.1002/chem.v21.25 pmid: 29907978 |
|
(i) Zhang, Z.; Zhang, H.; Jiao, C.; Ye, K.; Zhang, H.; Zhang, J.; Wang, Y. Inorg. Chem. 2015, 54, 2652.
doi: 10.1021/ic502815q pmid: 29907978 |
|
(j) Kubota, Y.; Niwa, T.; Jin, J.; Funabiki, K.; Matsui, M. Org. Lett. 2015, 17, 3174.
doi: 10.1021/acs.orglett.5b01547 pmid: 29907978 |
|
[9] |
Sadu, V. S.; Bin, H. R.; Lee, D. M.; Lee, K. I. Sci. Rep. 2017, 7, 242.
doi: 10.1038/s41598-017-00236-2 |
[10] |
Yang, K.; Zhang, G.; Song, Q. Chem. Sci. 2018, 9, 7666.
doi: 10.1039/c8sc02281j pmid: 30393527 |
[11] |
Sawazaki, T.; Shimizu, Y.; Oisaki, K.; Sohma, Y.; Kanai, M. Org. Lett. 2018, 20, 7767.
doi: 10.1021/acs.orglett.8b03138 pmid: 30499675 |
[12] |
Wang, Z.; Cheng, C.; Kang, Z.; Miao, W.; Liu, Q.; Wang, H.; Hao, E. J. Org. Chem. 2019, 84, 2732.
doi: 10.1021/acs.joc.8b03145 |
[13] |
For the photocatalytic and fluorescent properties of these complexes, see: (a) Zu, W.; Day, C.; Wei, L.; Jia, X.; Xu, L. Chem. Commun. 2020, 56, 8273.
doi: 10.1039/D0CC03230A |
(b) Wei, L.; Wei, Y.; Zhang, J.; Xu, L. Green Chem. 2021, 23, 4446.
doi: 10.1039/D1GC01063H |
|
[14] |
Wei, L.; Zhang, J.; Xu, L. ACS Sustainable Chem. Eng. 2020, 8, 13894.
doi: 10.1021/acssuschemeng.0c05121 |
[15] |
(a) Zou, X.; Xu, S. Chin. J. Org. Chem. 2021, 41, 2610. (in Chinese)
doi: 10.6023/cjoc202103020 |
(邹晓亮, 徐森苗, 有机化学, 2021, 41, 2610.)
|
|
(b) Luo, H.; Pei, N.; Zhang, J. Chin. J. Org. Chem. 2021, 41, 2990. (in Chinese)
doi: 10.6023/cjoc202103013 |
|
(罗欢欢, 裴娜, 张敬, 有机化学, 2021, 41, 2990.)
|
|
[16] |
Adamo, C.; Jacquemin, D. Chem. Soc. Rev. 2013, 42, 845.
doi: 10.1039/C2CS35394F |
[17] |
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A; Gaussian, Inc.: Wallingford, CT, 2009.
|
[18] |
(a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
doi: 10.1007/s00214-007-0310-x |
(b) Mennucci, B.; Cances, E.; Tomasi, J. J. Phys. Chem. B 1997, 101, 10506.
doi: 10.1021/jp971959k |
[1] | Jianghu Dong, Liangming Xuan, Chi Wang, Chenxi Zhao, Haifeng Wang, Qiongjiao Yan, Wei Wang, Fen'er Chen. Recent Advances in Visible-Light-Induced C(3)—H Functionalization of Quinoxalinones under Transition-Metal-Free or Photocatalyst-Free [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 111-136. |
[2] | Runye Gao, Lingling Zuo, Fang Wang, Chuanying Li, Huajiang Jiang, Pinhua Li, Lei Wang. Recent Advances in Controllable Organic Reactions Induced by Visible Light without External Photocatalyst [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 1883-1903. |
[3] | Xiaoting Wu, Feng Zhao, Xiaochen Ji, Huawen Huang. Visible Light-Assisted Photocatalyst-Free Tandem Sulfonylation/ Cyclization for the Synthesis of Oxindoles [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4323-4331. |
[4] | Yan He, Tianzi Huang, Xiaoqin Shi, Yan Chen, Qiong Wu. Recent Advances in Photocatalytic Reactions with Isocyanides [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4220-4246. |
[5] | Shuaiqi He, Haocong Li, Xiaolan Chen, Igor B. Krylov, Alexander O. Terent'ev, Lingbo Qu, Bing Yu. Advances of N-Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4661-4689. |
[6] | Yujuan Xiao, Yang Yang, Fan Zhang, Yadong Feng, Xiuling Cui. UV-Light-Initiated Construction of Indenones through Cyclization of Aryl Aldehydes or Aryl Ketones with Alkynes Avoiding Photocatalyst [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4808-4814. |
[7] | Qi Lianshan, Wang Tao, Wei Yongmei, Tian Hengshui. Study on the Effect of Co-reductant Aldehydes on Epoxidation of Propylene Catalyzed by Metalloporphyrins [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1305-1309. |
[8] | Zhu Jihua, Zhang Hao, Liu Min, Liu Jingjiang, Liao Yuan, Quan Zhengjun, Wang Xicun. An Intramolecular Charge Transfer (ICT)-Based Fluorescent Probe of Hydrogen Sulphide under pH Control Strategy [J]. Chinese Journal of Organic Chemistry, 2020, 40(4): 1043-1049. |
[9] | Chen Jinyang, Li Yuhan, Mei Lan, Wu Hongyu. Application of Photosensitizer 2, 4, 5, 6-Tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene in Photo-induced Transition-Metal-Free Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2019, 39(11): 3040-3050. |
[10] | Fang Jiemei, Fan Weizheng, Feng Bainian. Visible-Light Catalyzed Trifluoroethylation of Propiolates to Synthesize Coumarin Analogues [J]. Chin. J. Org. Chem., 2018, 38(10): 2666-2672. |
[11] | Wang Chun, Gao Shutao, Zhou Xin, Wu Qiuhua, Jiao Caina, Wang Zhi. Research Progress of Plasmonic Photocatalyst in Organic Synthesis [J]. Chin. J. Org. Chem., 2014, 34(11): 2217-2223. |
[12] | Li Yanan, Tang Ting, Lian Peng, Luo Yifen, Yang Wei, Wang Youbing, Li Hui, Zhang Zhizhong, Wang Bozhou. Synthesis, Thermal Performance and Quantum Chemistry Study on 1,4-Diamino-3,6-dinitropyrazolo[4,3-c]pyrazole [J]. Chin. J. Org. Chem., 2012, (03): 580-588. |
[13] |
Wang, Bozhou*,a; Lai, Weipeng a; Lian, Penga; Jia, Siyuana; Xiong, Cunlianga; Xue, Yongqiangb . Novel Synthesis, Characterization and Quantum Chemistry Study on 3,3’-Azobis(6-amino-1,2,4,5-tetrazine) [J]. Chin. J. Org. Chem., 2009, 29(08): 1243-1248. |
[14] |
Fan, Yanjie; Wang, Bozhou* Lai, Weipeng; Lian, Peng; Jiang, Jun; Wang, Xijiea; Xue, Yongqiangb . Synthesis, Characterization and Quantum Chemistry Study on 3,3’-Dicyanodifurazanyl Ether (FOF-2) [J]. Chin. J. Org. Chem., 2009, 29(04): 614-620. |
[15] | WANG Bo-Zhou*,a,LAI Wei-Penga,LIU Qiana,LIAN Penga,XUE Yong-Qiangb. Synthesis, Characterization and Quantum Chemistry Study on 3,6-Bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine [J]. Chin. J. Org. Chem., 2008, 28(03): 422-427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||