Chinese Journal of Organic Chemistry >
Recent Advances in Kinetic Resolution of Tertiary Alcohols
Received date: 2021-10-09
Revised date: 2021-11-13
Online published: 2021-11-25
Supported by
National Natural Science Foundation of China(21901162); National Natural Science Foundation of China(22171186); ShanghaiTech University Start-Up Funding
Chiral tertiary alcohol is widely present in a series of bioactive compounds, natural products and pharmaceuticals. Consequently, the development of efficient asymmetric catalytic methods for their syntheses is highly important. Kinetic resolution (KR) is an important strategy to access enantioenriched alcohols from racemic alcohols. However, due to the requirement to distinguish three none-hydrogen substituents at the α-position of tertiary alcohols, it is challenging to develop highly efficient kinetic resolution protocols for tertiary alcohols with broad substrate scope. Nevertheless, significant progress has been made in the field of nonenzymatic kinetic resolution of tertiary alcohols in recent years, and a number of novel asymmetric reactions and catalytic systems have been successfully applied in the KR of tertiary alcohols. The tremendous advances in the kinetic resolution of tertiary alcohols are comprehensively reviewed, the substrate scope, characteristics, mechanisms and limitations of these methods are summarized, and our perspective on this research field is also provided.
Yunrong Chen , Wei Liu , Xiaoyu Yang . Recent Advances in Kinetic Resolution of Tertiary Alcohols[J]. Chinese Journal of Organic Chemistry, 2022 , 42(3) : 679 -697 . DOI: 10.6023/cjoc202110009
[1] | (a) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108 (8), 2853. |
[1] | (b) Liu, Y.-L.; Lin, X.-T. Adv. Syn. Catal. 2019, 361 (5), 876. |
[1] | (c) Collados, J. F.; Solà, R.; Harutyunyan, S. R.; Maciá, B. ACS Catal. 2016, 6 (3), 1952. |
[1] | (d) Rong, J.; Pellegrini, T.; Harutyunyan, S. R. Chem.-Eur. J. 2016, 22 (11), 3558. |
[1] | (e) Zhu, D.; Xu, M.-H. Chin. J. Org. Chem. 2020, 40, 255. (in Chinese) |
[1] | (祝东星, 徐明华, 有机化学, 2020, 40, 255.) |
[1] | (f) Luo, R.; Liao, J.; Zhang, J. Chin. J. Org. Chem. 2013, 33, 2298. (in Chinese) |
[1] | (罗人仕, 廖建华, 张剑, 有机化学, 2013, 33, 2298.) |
[1] | (g) Fu, Y.; Hou, B.; Zhao, X.; Du, Z.; Hu, Y. Chin. J. Org. Chem. 2015, 35, 2507. (in Chinese) |
[1] | (傅颖, 侯博, 赵兴玲, 杜正银, 胡雨来, 有机化学, 2015, 35, 2507.) |
[2] | (a) Sim, S.-B. D.; Wang, M.; Zhao, Y. ACS Catal. 2015, 5(6), 3609. |
[2] | (b) Bergonzini, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2012, 51(4), 971. |
[2] | (c) Jung, B.; Hong, M. S.; Kang, S. H. Angew. Chem. Int. Ed. 2007, 46(15), 2616. |
[3] | (a) Robinson, D. E. J. E.; Bull, S. D. Tetrahedron: Asymmetry 2003, 14(11), 1407. |
[3] | (b) Vedejs, E.; Jure, M. Angew. Chem. Int. Ed. 2005, 44(26), 3974. |
[3] | (c) Müller, C. E.; Schreiner, P. R. Angew. Chem. Int. Ed. 2011, 50(27), 6012. |
[3] | (d) Pellissier, H. Adv. Syn. Catal. 2011, 353(10), 1613. |
[3] | (e) Krasnov, V. P.; Gruzdev, D. A.; Levit, G. L. Eur. J. Org. Chem. 2012, 2012(8), 1471. |
[3] | (f) Petersen, K. S. Asian J. Org. Chem. 2016, 5(3), 308. |
[3] | (g) Chen, S.; Shi, Y.-H.; Wang, M. Chem. Asian J. 2018, 13(17), 2184. |
[3] | (h) Wang, Z.; Pan, D.; Li, T.; Jin, Z. Chem. Asian J. 2018, 13(17), 2149. |
[3] | (i) Yang, H.; Zheng, W.-H. Tetrahedron Lett. 2018, 59(7), 583. |
[3] | (j) Liu, W.; Yang, X. Asian J. Org. Chem. 2021, 10(4), 692. |
[4] | Kagna, H. B.; Fiaud, J. C., Topics in Stereochemistry. In Kinetic Resolution, Eliel, E. L.; Wilen, S. H., Eds. Wiley; New York: 1988; Vol. 18, p. 249. |
[5] | (a) Özdemirhan, D. Synth. Commun. 2017, 47(7), 629. |
[5] | (b) Özdemirhan, D.; Sezer, S.; Sönmez, Y. Tetrahedron: Asymmetry 2008, 19(23), 2717. |
[5] | (c) Deng, D.; Zhang, Y.; Sun, A.; Sai, K.; Hu, Y. Chin. J. Org. Chem. 2018, 38, 1185. (in Chinese) |
[5] | (邓盾, 张云, 孙爱君, 赛克, 胡云峰, 有机化学, 2018, 38, 1185.) |
[6] | Jarvo, E. R.; Evans, C. A.; Copeland, G. T.; Miller, S. J. J. Org. Chem. 2001, 66(16), 5522. |
[7] | Angione, M. C.; Miller, S. J. Tetrahedron 2006, 62(22), 5254. |
[8] | (a) Lu, S.; Poh, S. B.; Siau, W.-Y.; Zhao, Y. Angew. Chem., nt. Ed. 2013, 52(6), 1731. |
[8] | (b) Lu, S.; Poh, S. B.; Siau, W.-Y.; Zhao, Y. Synlett 2013, 24(10), 1165. |
[9] | Greenhalgh, M. D.; Smith, S. M.; Walden, D. M.; Taylor, J. E.; Brice, Z.; Robinson, E. R. T.; Fallan, C.; Cordes, D. B.; Slawin, A. M. Z.; Richardson, H. C.; Grove, M. A.; Cheong, P. H.-Y.; Smith, A. D. Angew. Chem. Int. Ed. 2018, 57(12), 3200. |
[10] | Guha, N. R.; Neyyappadath, R. M.; Greenhalgh, M. D.; Chisholm, R.; Smith, S. M.; McEvoy, M. L.; Young, C. M.; Rodríguez- Escrich, C.; Pericàs, M. A.; Hähner, G.; Smith, A. D. Green Chem. 2018, 20(19), 4537. |
[11] | Young, C. M.; Elmi, A.; Pascoe, D. J.; Morris, R. K.; McLaughlin, C.; Woods, A. M.; Frost, A. B.; de la Houpliere, A.; Ling, K. B.; Smith, T. K.; Slawin, A. M. Z.; Willoughby, P. H.; Cockroft, S. L.; Smith, A. D. Angew. Chem. Int. Ed. 2020, 59(9), 3705. |
[12] | Qu, S.; Smith, S. M.; Laina-Martín, V.; Neyyappadath, R. M.; Greenhalgh, M. D.; Smith, A. D. Angew. Chem. Int. Ed. 2020, 59(38), 16572. |
[13] | Mandai, H.; Shiomoto, R.; Fujii, K.; Mitsudo, K.; Suga, S. Org. Lett. 2021, 23(4), 1169. |
[14] | Karatas, B.; Rendler, S.; Fröhlich, R.; Oestreich, M. Org. Biomol. Chem. 2008, 6(8), 1435. |
[15] | Seliger, J.; Dong, X.; Oestreich, M. Angew. Chem. Int. Ed. 2019, 58(7), 1970. |
[16] | Čorić, I.; Müller, S.; List, B. J. Am. Chem. Soc. 2010, 132(49), 17370. |
[17] | Yamanaka, T.; Kondoh, A.; Terada, M. J. Am. Chem. Soc. 2015, 137(3), 1048. |
[18] | Kim, J. H.; Čorić, I.; Palumbo, C.; List, B. J. Am. Chem. Soc. 2015, 137(5), 1778. |
[19] | Yoneda, N.; Matsumoto, A.; Asano, K.; Matsubara, S. Chem. Lett. 2016, 45(11), 1300. |
[20] | Rajkumar, S.; He, S.; Yang, X. Angew. Chem. Int. Ed. 2019, 58(30), 10315. |
[21] | Rajkumar, S.; Tang, M.; Yang, X. Angew. Chem. Int. Ed. 2020, 59(6), 2333. |
[22] | Pan, Y.; Jiang, Q.; Rajkumar, S.; Zhu, C.; Xie, J.; Yu, S.; Chen, Y.; He, Y. P.; Yang, X. Adv. Syn. Catal. 2020, 363(1), 200. |
[23] | Zheng, Z.; Cao, Y.; Chong, Q.; Han, Z.; Ding, J.; Luo, C.; Wang, Z.; Zhu, D.; Zhou, Q. L.; Ding, K. J. Am. Chem. Soc. 2018, 140(32), 10374. |
[24] | Zhang, C. H.; Gao, Q.; Li, M.; Wang, J. F.; Yu, C. M.; Mao, B. Org. Lett. 2021, 23(10), 3949. |
[25] | Hua, Y.; Liu, Z.-S.; Xie, P.-P.; Ding, B.; Cheng, H.-G.; Hong, X.; Zhou, Q. Angew. Chem. Int. Ed. 2021, 60(23), 12824. |
[26] | Schipper, D. J.; Rousseaux, S.; Fagnou, K. Angew. Chem. Int. Ed. 2009, 48(44), 8343. |
[27] | Zhao, Y.; Mitra, A. W.; Hoveyda, A. H.; Snapper, M. L. Angew. Chem. Int. Ed. 2007, 46(44), 8471. |
[28] | Olivares-Romero, J. L.; Li, Z.; Yamamoto, H. J. Am. Chem. Soc. 2013, 135(9), 3411. |
[29] | Pawliczek, M.; Hashimoto, T.; Maruoka, K. Chem. Sci. 2018, 9(5), 1231. |
[30] | Huang, B.; He, Y.; Levin, M. D.; Coelho, J. A. S.; Bergman, R. G.; Toste, F. D. Adv. Synth. Catal. 2020, 362(2), 295. |
[31] | Niu, S.; Zhang, H.; Xu, W.; Bagdi, P. R.; Zhang, G.; Liu, J.; Yang, S.; Fang, X. Nat. Commun. 2021, 12(1), 3735. |
[32] | Desrues, T.; Liu, X.; Pons, J.-M.; Monnier, V.; Amalian, J.-A.; Charles, L.; Quintard, A.; Bressy, C. Org. Lett. 2021, 23(11), 4332. |
[33] | Tang, M.; Gu, H.; He, S.; Rajkumar, S.; Yang, X. Angew. Chem. Int. Ed. 2021, 60(39), 21334. |
[34] | Xie, S.; Gao, X.; Zhou, F.; Wu, H.; Zhou, J. Chin. Chem. Lett. 2020, 31(2), 324. |
[35] | Liao, K.; Gong, Y.; Zhu, R.-Y.; Wang, C.; Zhou, F.; Zhou, J. Angew. Chem. Int. Ed. 2021, 60(15), 8488. |
[36] | Tosaki, S.-y.; Hara, K.; Gnanadesikan, V.; Morimoto, H.; Harada, S.; Sugita, M.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128(36), 11776. |
[37] | Hara, K.; Tosaki, S.-y.; Gnanadesikan, V.; Morimoto, H.; Harada, S.; Sugita, M.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Tetrahedron 2009, 65(26), 5030. |
[38] | Shintani, R.; Takatsu, K.; Hayashi, T. Org. Lett. 2008, 10(6), 1191. |
[39] | Zhang, W.; Ma, S. Chem. Commun. 2018, 54(47), 6064. |
[40] | Zheng, W.-F.; Zhang, W.; Huang, C.; Wu, P.; Qian, H.; Wang, L.; Guo, Y.-L.; Ma, S. Nat. Catal. 2019, 2(11), 997. |
[41] | Wang, J.; Zhang, W.; Wu, P.; Huang, C.; Zheng, Y.; Zheng, W.-F.; Qian, H.; Ma, S. Org. Chem. Front. 2020, 7(23), 3907. |
[42] | Mao, R.; Zhao, Y.; Zhu, X.; Wang, F.; Deng, W.-Q.; Li, X. Org. Lett. 2021, 23(18), 7038. |
[43] | Kühn, F.; Katsuragi, S.; Oki, Y.; Scholz, C.; Akai, S.; Gröger, H. Chem. Commun. 2020, 56(19), 2885. |
/
〈 |
|
〉 |