ARTICLES

Synthesis of 1,1-Diboron Alkanes via Diborylation of Unactivated Primary C(sp3)—H Bonds Enabled by AsPh3/Iridium Catalysis

  • Wenqi Liu ,
  • Zhenlu Shen ,
  • Senmiao Xu
Expand
  • a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014
    b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences, Lanzhou 730000

Received date: 2021-11-23

  Revised date: 2021-12-08

  Online published: 2021-12-15

Supported by

National Natural Science Foundation of China(91956116); National Natural Science Foundation of China(21776260)

Abstract

The AsPh3/iridium catalyzed diborylation of unactivated primary C(sp3)—H bonds using pyrazoles as directing groups was disclosed. This method could tolerate a variety of functional groups, affording a vast array of 1,1-diboron alkanes in moderate to good yields. The synthetic utility of the current method on a gram-scale reaction for further functionalization was also demonstrated.

Cite this article

Wenqi Liu , Zhenlu Shen , Senmiao Xu . Synthesis of 1,1-Diboron Alkanes via Diborylation of Unactivated Primary C(sp3)—H Bonds Enabled by AsPh3/Iridium Catalysis[J]. Chinese Journal of Organic Chemistry, 2022 , 42(4) : 1101 -1110 . DOI: 10.6023/cjoc202111032

References

[1]
(a) Hall, D. T. Boronic Acids, Wiley-VCH, Weinheim, 2011.
[1]
(b) Zou, C.; Niu, C.; Liu, X.; Zhang, C. Chin. J. Org. Chem. 2021, 41, 4240. (in Chinese)
[1]
( 邹辰晨, 牛长浩, 刘新宇, 张淳, 有机化学, 2021, 41, 4240.)
[2]
(a) Wu, C.; Wang, J. Tetrahedron Lett. 2018, 59, 2128.
[2]
(b) Nallagonda, R.; Padala, K.; Masarwa, A. Org. Biomol. Chem. 2018, 16, 1050.
[2]
(c) Jo, W.; Lee, J. H.; Cho, S. H. Chem. Commun. 2021, 57, 4346.
[2]
(d) Zhang, C.; Hu, W.; Morken, J. P. ACS Catal. 2021, 11, 10660.
[3]
(a) Sun, W.; Wang, L.; Xia, C.; Liu, C. Angew. Chem., nt. Ed. 2018, 57, 5501.
[3]
(b) Li, X.; Hall, D. G. Angew. Chem., nt. Ed. 2018, 57, 10304.
[3]
(c) Iacono, C. E.; Stephens, T. C.; Rajan, T. S.; Pattison, G. J. Am. Chem. Soc. 2018, 140, 2036.
[3]
(d) Zheng, P.; Zhai, Y.; Zhao, X.; Xu, T. Chem. Commun. 2018, 54, 13375.
[3]
(e) Gava, R.; Fernández, E. Chem.-Eur. J. 2019, 25, 8013.
[3]
(f) Lee, B.; Chirik, P. J. J. Am. Chem. Soc. 2020, 142, 2429.
[3]
(g) Kuang, Z.; Yang, K.; Zhou, Y.; Song, Q. Chem. Commun. 2020, 56(48), 6469.
[3]
(h) Li, X.; Hall, D. G. J. Am. Chem. Soc. 2020, 142, 9063.
[3]
(i) Zou, L.-H.; Fan, M.; Wang, L.; Liu, C. Chin. Chem. Lett. 2020, 31, 1911.
[4]
(a) Harris, M. R.; Wisniewska, H. M.; Jiao, W.; Wang, X.; Bradow, J. N. Org. Lett. 2018, 20, 2867.
[4]
(b) Murray, S. A.; Luc, E. C. M.; Meek, S. J. Org. Lett. 2018, 20, 469.
[4]
(c) Lee, H.; Lee, Y.; Cho, S. H. Org. Lett. 2019, 21, 5912.
[4]
(d) Kim, J.; Shin, M.; Cho, S. H. ACS Catal. 2019, 9, 8503.
[4]
(e) Kim, J.; Hwang, C.; Kim, Y.; Cho, S. H. Org. Process Res. Dev. 2019, 23, 1663.
[4]
(f) Nishino, S.; Hirano, K.; Miura, M. Org. Lett. 2019, 21, 4759.
[4]
(g) Shin, M.; Kim, M.; Hwang, C.; Lee, H.; Kwon, H.; Park, J.; Lee, E.; Cho, S. H. Org. Lett. 2020, 22, 2476.
[4]
(h) Green, J. C.; Zanghi, J. M.; Meek, S. J. J. Am. Chem. Soc. 2020, 142, 1704.
[4]
(i) Zhang, C.; Wu, X.; Wang, C.; Zhang, C.; Qu, J.; Chen, Y. Org. Lett. 2020, 22, 6376.
[4]
(j) Kim, M.; Park, B.; Shin, M.; Kim, S.; Kim, J.; Baik, M.-H.; Cho, S. H. J. Am. Chem. Soc. 2021, 143, 1069.
[4]
(k) Li, X.; Gao, G.; He, S.; Song, Q. Org. Chem. Front. 2021, 8, 4543.
[5]
(a) Namirembe, S.; Gao, C.; Wexler, R. P.; Morken, J. P. Org. Lett. 2019, 21, 4392.
[5]
(b) Kovalenko, M.; Yarmoliuk, D. V.; Serhiichuk, D.; Chernenko, D.; Smyrnov, V.; Breslavskyi, A.; Hryshchuk, O. V.; Kleban, I.; Rassukana, Y.; Tymtsunik, A. V.; Tolmachev, A. A.; Kuchkovska, Y. O.; Grygorenko, O. O. Eur. J. Org. Chem. 2019, 5624.
[5]
(c) Sun, W.; Wang, L.; Hu, Y.; Wu, X.; Xia, C.; Liu, C. Nat. Commun. 2020, 11, 3113.
[6]
Wu, C.; Bao, Z.; Dou, B.; Wang, J. Chem.-Eur. J. 2021, 27, 2294.
[7]
Kumar, N.; Reddy, R. R.; Masarwa, A. Chem.-Eur. J. 2019, 25, 8008.
[8]
(a) Masaki, S.; Michael, S.; Ikuhiro, N.; Katsuhiro, S.; Takuya, K.; Tamejiro, H. Chem. Lett. 2006, 35, 1222.
[8]
(b) Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890.
[8]
(c) Yang, C.-T.; Zhang, Z.-Q.; Tajuddin, H.; Wu, C.-C.; Liang, J.; Liu, J.-H.; Fu, Y.; Czyzewska, M.; Steel, P. G.; Marder, T. B.; Liu, L. Angew. Chem., nt. Ed. 2012, 51, 528.
[8]
(d) Atack, T. C.; Cook, S. P. J. Am. Chem. Soc. 2016, 138, 6139.
[9]
(a) Abu Ali, H.; Goldberg, I.; Kaufmann, D.; Burmeister, C.; Srebnik, M. Organometallics 2002, 21, 1870.
[9]
(b) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448.
[9]
(c) Wommack, A. J.; Kingsbury, J. S. Tetrahedron Lett. 2014, 55, 3163.
[9]
(d) Cuenca, A. B.; Cid, J.; García-López, D.; Carbó, J. J.; Fernández, E. Org. Biomol. Chem. 2015, 13, 9659.
[10]
Eichhorn, A. F.; Kuehn, L.; Marder, T. B.; Radius, U. Chem. Commun. 2017, 53, 11694.
[11]
Zhao, H.; Tong, M.; Wang, H.; Xu, S. Org. Biomol. Chem. 2017, 15, 3418.
[12]
(a) Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257.
[12]
(b) He, Z.; Zhu, Q.; Hu, X.; Wang, L.; Xia, C.; Liu, C. Org. Chem. Front. 2019, 6, 900.
[12]
(c) He, Z.; Fan, M.; Xu, J.; Hu, Y.; Wang, L.; Wu, X.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2019, 39, 3438. (in Chinese)
[12]
( 何泽瑜, 范敏, 徐佳能, 胡越, 王露, 吴旭东, 夏春谷, 刘超, 有机化学, 2019, 39, 3438.)
[12]
(d) Li, J.; Wang, H.; Qiu, Z.; Huang, C.-Y.; Li, C.-J. J. Am. Chem. Soc. 2020, 142, 13011.
[13]
(a) Li, L.; Gong, T.; Lu, X.; Xiao, B.; Fu, Y. Angew. Chem. Int. Ed. 2018, 57, 12935.
[13]
(b) Teo, W. J.; Ge, S. Angew. Chem. Int. Ed. 2018, 57, 1654.
[13]
(c) Wang, X.; Cui, X.; Li, S.; Wang, Y.; Xia, C.; Jiao, H.; Wu, L. Angew. Chem. Int. Ed. 2020, 59, 13608.
[13]
(d) Jin. S.; Liu, K.; Wang, S.; Song, Q. J. Am. Chem. Soc. 2021, 143, 13124.
[14]
(a) Zweifel, G.; Arzoumanian, H. J. Am. Chem. Soc. 1967, 89, 291.
[14]
(b) Brown, H. C.; Rhodes, S. P. J. Am. Chem. Soc. 1969, 91, 4306.
[14]
(c) Brown, H. C.; Scouten, C. G.; Liotta, R. J. Am. Chem. Soc. 1979, 101, 96.
[14]
(d) Soundararajan, R.; Matteson, D. S. Organometallics 1995, 14, 4157.
[14]
(e) Endo, K.; Hirokami, M.; Shibata, T. Synlett 2009, 1331.
[14]
(f) Lee, S.; Li, D.; Yun, J. Chem.-Asian J. 2014, 9, 2440.
[14]
(f) Zuo, Z.; Huang, Z. Org. Chem. Front. 2016, 3, 434.
[14]
(g) Krautwald, S.; Bezdek, M. J.; Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 3868.
[14]
(h) Gao, G.; Yan, J.; Yang, K.; Chen, F.; Song, Q. Green Chem. 2017, 19, 3997.
[14]
(i) Gao, G.; Kuang, Z.; Song, Q. Org. Chem. Front. 2018, 5, 2249.
[14]
(j) Docherty, J. H.; Nicholson, K.; Dominey, A. P.; Thomas, S. P. ACS Catal. 2020, 10, 4686.
[15]
(a) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894.
[15]
(b) Feng, X.; Jeon, H.; Yun, J. Angew. Chem. Int. Ed. 2013, 52, 3989.
[15]
(c) Nguyen, P.; Coapes, R. B.; Woodward, A. D.; Taylor, N. J.; Burke, J. M.; Howard, J. A. K.; Marder, T. B. J. Organometallic Chem. 2002, 652, 77.
[15]
(d) Coombs, J. R.; Zhang, L.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 16140.
[15]
(e) Scheuermann, M. L.; Johnson, E. J.; Chirik, P. J. Org. Lett. 2015, 17, 2716.
[16]
(a) Hu, J.; Zhao, Y.; Shi, Z. Nat. Catal. 2018, 1, 860.
[16]
(b) Zhang, L.; Si, X.; Rominger, F.; Hashmi, A. S. K. J. Am. Chem. Soc. 2020, 142, 10485.
[16]
(c) Hu, M.; Ge, S. Nat. Commun. 2020, 11, 765.
[16]
(d) Xu, J.-X.; Wu, F.-P.; Wu, X.-F. Catal. Commun. 2021, 149, 106205.
[17]
Cho, S. H.; Hartwig, J. F. Chem. Sci. 2014, 5, 694.
[18]
Palmer, W. N.; Obligacion, J. V.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 766.
[19]
Palmer, W. N.; Zarate, C.; Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 2589.
[20]
Yamamoto, T.; Ishibashi, A.; Suginome, M. Org. Lett. 2019, 21, 6235.
[21]
(a) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
[21]
(b) Ros, A.; Fernandez, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229.
[21]
(c) Kuroda, Y.; Nakao, Y. Chem. Lett. 2019, 48, 1092.
[21]
(d) Wright, J. S.; Scott, P. J. H.; Steel, P. G. Angew. Chem. Int. Ed. 2021, 60, 2796.
[21]
(e) Zou, X.; Xu, S. Chin. J. Org. Chem. 2021, 41, 2610. (in Chinese)
[21]
( 邹晓亮, 徐森苗, 有机化学, 2021, 41, 2610.)
[22]
(a) Liskey, C. W.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 12422.
[22]
(b) Kawamorita, S.; Miyazaki, T.; Iwai, T.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2012, 134, 12924.
[22]
(c) Kawamorita, S.; Murakami, R.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2013, 135, 2947.
[22]
(d) Cho, S. H.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 8157.
[22]
(e) Larsen, M. A.; Cho, S. H.; Hartwig, J. J. Am. Chem. Soc. 2016, 138, 762.
[22]
(f) Reyes, R. L.; Iwai, T.; Maeda, S.; Sawamura, M. J. Am. Chem. Soc. 2019, 141, 6817.
[22]
(g) Reyes, R. L.; Sato, M.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2020, 142, 589.
[22]
(h) Reyes, R. L.; Sato, M.; Iwai, T.; Suzuki, K.; Maeda, S.; Sawamura, M. Science 2020, 369, 970.
[22]
(i) Yang, Y.; Chen, L.; Xu, S. Angew. Chem. Int. Ed. 2021, 60, 3524.
[22]
(j) Du, R.; Liu, L.; Xu, S. Angew. Chem. Int. Ed. 2021, 60, 5843.
[22]
(k) Liu, L.; Du, R.; Xu, S. Chin. J. Org. Chem. 2021, 41, 1572. (in Chinese)
[22]
( 刘路华, 杜荣荣, 徐森苗, 有机化学, 2021, 41, 1572.)
[23]
(a) Rablen, P. R.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 4648.
[23]
(b) Walton, J. C.; McCarroll, A. J.; Chen, Q.; Carboni, B.; Nziengui, R. J. Am. Chem. Soc. 2000, 122, 5455.
[24]
Sasaki, I.; Taguchi, J.; Hiraki, S.; Ito, H.; Ishiyama, T. Chem.-Eur. J. 2015, 21, 9236.
[25]
Crystallographic data for 18 could be found in the Supporting Information. CCDC 2104779 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
[26]
Jo, W.; Kim, J.; Choi, S.; Cho, S. H. Angew. Chem. Int. Ed. 2016, 55, 9690.
[27]
Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2006, 71, 4651.
Outlines

/