Chinese Journal of Organic Chemistry >
Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation
Received date: 2021-10-19
Revised date: 2021-12-29
Online published: 2022-01-11
Supported by
National Natural Science Foundation of China(22001036); National Natural Science Foundation of China(21808032)
Transition-metal catalyzed directed C—H bond activation and cyclization of unsaturated molecules have been developed as an efficient method to synthesize complex carbon aromatic and heteroaromatic compounds. However, additional stoichiometric oxidants are often required to realize the reoxidation cycle. Electrochemical organic synthesis can use current to replace expensive and toxic oxidants. It is an environment-friendly synthesis method. In recent years, remarkable progress has been made in the combination of electrochemical organic synthesis and C—H activation catalyzed by transition metals (such as Pd, Ni, Co, Ru, Cu, Rh, Ir, etc.). The latest progress of transition-metal catalyzed electrooxidative annulation of unsaturated molecules such as alkynes, olefins, carbon monoxide and isocyanogens via directed C—H activation is reviewed. Finally, the challenges and the future development on this important area are also described.
Key words: C—H bond activation; electrooxidation; cyclization; unsaturated molecule
Wucheng Xie , Xu Chen , Yunyue Li , Jieling Lin , Wanwen Chen , Junjun Shi . Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation[J]. Chinese Journal of Organic Chemistry, 2022 , 42(5) : 1286 -1306 . DOI: 10.6023/cjoc202110028
[1] | (a) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900. |
[1] | (b) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863. |
[1] | (c) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev. 2017, 117, 9163. |
[1] | (d) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247. |
[1] | (e) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754. |
[1] | (f) Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787. |
[1] | (g) Hu, Y.; Zhou, B.; Wang, C. Acc. Chem. Res. 2018, 51, 816. |
[1] | (h) Gensch, T.; James, M. J.; Dalton, T.; Glorius, F. Angew. Chem., Int. Ed. 2018, 57, 2296. |
[1] | (i) Hu, Y.; Zhou, B.; Wang, C. Acc. Chem. Res. 2018, 51, 816. |
[1] | (j) Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199. |
[1] | (k) Huang, J.; Gu, Q.; You, S.-L. Chin. J. Org. Chem. 2018, 38, 51. (in Chinese) |
[1] | (黄家翩, 顾庆, 游书力, 有机化学, 2018, 38, 51.) |
[1] | (l) Ren, Q.; Nie, B.; Zhang, Y.; Zhang, J. Chin. J. Org. Chem. 2018, 38, 2465. (in Chinese) |
[1] | (任青云, 聂飚, 张英俊, 张霁, 有机化学, 2018, 38, 2465.) |
[1] | (m) Zhao, K.; Yang, L.; Liu, J.; Xia, C. R. Chin. J. Org. Chem. 2018, 38, 2833. (in Chinese) |
[1] | (赵康, 杨磊, 刘建华, 夏春谷, 有机化学, 2018, 38, 2833.) |
[1] | (n) Xu, L.; Xu, H.; Lin, H.; Dai, H. Chin. J. Org. Chem. 2018, 38, 1940. (in Chinese) |
[1] | (徐琳琳, 徐辉, 林海霞, 戴辉雄, 有机化学, 2018, 38, 1940.) |
[1] | (o) Zhan, B.-B.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39, 3602. (in Chinese) |
[1] | (占贝贝, 史炳锋, 有机化学, 2019, 39, 3602.) |
[1] | (p) Duarah, G.; Kaishap, P. P.; Begum, T.; Gogoi, S. Adv. Synth. Catal. 2019, 361, 654. |
[1] | (q) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192. |
[1] | (r) Han, Y.-Q.; Zhou, T. Chin. J. Chem. 2020, 38, 527. |
[1] | (s) Liu, Y.-H.; Xia, Y.-N.; Shi, B.-F. Chin. J. Chem. 2020, 38, 635. |
[1] | (t) Kumar, S. V.; Banerjeea, S.; Punniyamurthy, T. Org. Chem. Front. 2020, 7, 1527. |
[1] | (u) Ma, W.; Kaplaneris, N.; Fang, X.; Gu, L.; Mei, R.; Ackermann, L. Org. Chem. Front. 2020, 7, 1022. |
[2] | (a) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front. 2014, 1, 843. |
[2] | (b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. |
[2] | (c) Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603. |
[2] | (d) Zhang, Q.; Shi, B.-F. Chin. J. Chem. 2019, 37, 647. |
[2] | (e) Rej, S.; Ano, Y.; Chatani, N. Chem. Rev. 2020, 120, 1788. |
[3] | (a) Fuentes, A. V.; Pineda, M. D.; Venkata, K. C. N. Pharmacy 2018, 6, 43. |
[3] | (b) Ghosh, K.; Nishii, Y.; Miura, M. ACS Catal. 2019, 9, 11455. |
[4] | (a) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007. |
[4] | (b) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. |
[4] | (c) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev. 2017, 117, 9163. |
[4] | (d) Santhoshkumar, R.; Cheng, C.-H. Chem.-Eur. J. 2019, 25, 9366. |
[5] | (a) Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74. |
[5] | (b) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138. |
[5] | (c) Tang, S.; Zeng, L.; Lei, A. J. Am. Chem. Soc. 2018, 140, 13128. |
[5] | (d) Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.; Lei, A. Chem. Rev. 2019, 119, 6769. |
[6] | (a) Jiang, X.; Hao, J.; Zhou, G.; Hou, C.; Hu, F. Chin. J. Org. Chem. 2019, 39, 1811. (in Chinese) |
[6] | (姜晓蕾, 郝佳奇, 周国庆, 侯程程, 胡芳东, 有机化学, 2019, 39, 1811.) |
[6] | (b) Hu, Z.; Tong, X.; Liu, G. Chin. J. Org. Chem. 2015, 35, 539. (in Chinese) |
[6] | (胡志勇, 童晓峰, 刘桂霞, 有机化学, 2015, 35, 539.) |
[6] | (c) Hong, C.; Jiang, X.; Yu, S.; Liu, Z.; Zhang, Y. Chin. J. Org. Chem. 2021, 43, 888. (in Chinese) |
[6] | (洪超, 蒋希程, 于书玲, 刘占祥, 张玉红, 有机化学, 2021, 43, 888.) |
[7] | (a) Piera, J.; Backvall, J.-E. C. Angew. Chem., Int. Ed. 2008, 47, 3506. |
[7] | (b) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851. |
[7] | (c) Warratz, S.; Kornhaaß, C.; Cajaraville, A.; Niepotter, B.; Stalke, D.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 5513. |
[7] | (d) Liang, Y.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640. |
[8] | Osterberg, P. M.; Niemeier, J. K.; Welch, C. J.; Hawkins, J. M.; Martinelli, J. R.; Johnson, T. E.; Root, T. W.; Stahl, S. S. Org. Process Res. Dev. 2015, 19, 1537. |
[9] | (a) Yu, M.; Shi, W.; Lei, A. Sci. China: Chem. 2021, 51, 188. (in Chinese) |
[9] | (余明明, 史文研, 雷爱文, 中国科学: 化学, 2021, 51, 188.) |
[9] | (b) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016. |
[9] | (c) Zhong, J.; Meng, Q.; Chen, B.; Tung, C.; Wu, L. Acta Chim. Sinica 2017, 75, 34. (in Chinese) |
[9] | (钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34.) |
[9] | (d) Xuan, J.; Zhang, Z.; Xiao, W. Angew. Chem., Int. Ed. 2015, 54, 15632. |
[10] | Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492. |
[11] | (a) O'Brien, A. G.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran, P. S.; Blackmond, D. G. Angew. Chem., Int. Ed. 2014, 53, 11868. |
[11] | (b) Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302. |
[11] | (c) Dou, G. Y.; Jiang, Y. Y.; Xu, K.; Zeng, C. C. Org. Chem. Front. 2019, 6, 2392. |
[12] | (a) Anderson, L. A.; Redden, A.; Moeller, K. D. Green Chem. 2011, 13, 1652. |
[12] | (b) Nguyen, B. H.; Perkins, R. J.; Smith, J. A.; Moeller, K. D. Beilstein J. Org. Chem. 2015, 11, 280. |
[13] | (a) Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338. |
[13] | (b) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309. |
[13] | (c) Ackermann, L. Acc. Chem. Res. 2020, 53, 84. |
[13] | (d) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc Chem. Res. 2020, 53, 300. |
[14] | (a) Meyer, T. H.; Finger, L. H.; Gandeepan, P.; Ackermann, L. Trends Chem. 2019, 1, 63. |
[14] | (b) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179. |
[15] | (a) Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S. Org. Lett. 2018, 20, 204. |
[15] | (b) Jin, S.; Kim, J.; Kim, D.; Park, J.-W.; Chang, S. ACS Catal. 2021, 11, 6590. |
[16] | (a) Kärkäs, M. D. Chem. Soc. Rev. 2018, 47, 5786. |
[16] | (b) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2018, 140, 11487. |
[16] | (c) Meng, Z.; Feng, C.; Xu, K. Chin. J. Org. Chem. 2021, 41, 2535. (in Chinese) |
[16] | (蒙泽银, 冯承涛, 徐坤, 有机化学, 2021, 41, 2535.) |
[17] | Yang, Q.-L.; Wang, X.-Y.; Wang, T.-L.; Yang, X.; Liu, D.; Tong, X.; Wu, X.-Y.; Mei, T.-S. Org. Lett. 2019, 21, 2645. |
[18] | Massignan, L.; Zhu, C.; Hou, X.; Oliveira, J. C. A.; Salamé, A.; Ackermann, L. ACS Catal. 2021, 11, 11639. |
[19] | (a) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. |
[19] | (b) Zhu, R.-Y.; Farmer, M. E.; Chen, Y.-Q.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 10578. |
[20] | Xu, F.; Li, Y.; Huang, C.; Xu, H. ACS Catal. 2018, 8, 3820. |
[21] | Qiu, Y.; Tian, C.; Massignan, L.; Rogge, T.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5818. |
[22] | Mei, R.; Koeller, J.; Ackermann, L. Chem. Commun. 2018, 54, 12879. |
[23] | (a) Wang, Z.; Hou, C.; Zhong, Y.; Lu, Y.; Mo, Z.; Pan, Y.; Tang, H. Org. Lett. 2019, 21, 9841. |
[23] | (b) Song, G.; Chen, D.; Pan, C.; Crabtree, R. H.; Li, X. J. Org. Chem. 2010, 75, 7487. |
[24] | Luo, M.; Zhang, T.; Cai, F.; Li, J.; He, D. Chem. Commun. 2019, 55, 7251. |
[25] | Luo, M.; Hu, M.; Song, R.; He, D.; Li, J. Chem. Commun. 2019, 55, 1124. |
[26] | Yang, L.; Steinbock, R.; Scheremetjew, A.; Kuniyil, R.; Finger, L. H.; Messinis, A. M.; Ackermann, L. Angew. Chem., Int. Ed. 2020, 59, 11130. |
[27] | Tan, X.; Hou, X.; Rogge, T.; Ackermann, L. Angew. Chem., Int. Ed. 2021, 60, 4619. |
[28] | (a) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796. |
[28] | (b) Santoro, S.; Ferlin, F.; Ackermann, L.; Vaccaro, L. Chem. Soc. Rev. 2019, 48, 2767. |
[29] | Kong, W.; Finger, L. H.; Messinis, A. M.; Kuniyil, R.; Oliveira, J. C. A.; Ackermann, L. J. Am. Chem. Soc. 2019, 141, 17198. |
[30] | Kong, W.; Shen, Z.; Finger, L. H.; Ackermann, L. Angew. Chem., Int. Ed. 2020, 59, 5551. |
[31] | Wang, Y.; Oliveira, J. C. A.; Lin, Z.; Ackermann, L. Angew. Chem., Int. Ed. 2021, 60, 6419. |
[32] | Xing, Y.; Chen, X.; Yang, Q.; Zhang, S.; Guo, H.; Hong, X.; Mei, T. Nat. Commun. 2021, 12, 930. |
[33] | Yang, Y.; Li, K.; Cheng, Y.; Wan, D.; Li, M.; You, J. Chem. Commun. 2016, 52, 2872. |
[34] | Yang, Q.; Xing, Y.; Wang, X.; Ma, H.; Weng, X.; Yang, X.; Guo, H.; Mei, T. J. Am. Chem. Soc. 2019, 141, 18970. |
[35] | Yang, Q.; Jia, H.; Liu, Y.; Xing, Y.; Ma, R.; Wang, M.; Qu, G.; Mei, T.; Guo, H. Org. Lett. 2021, 23, 1209. |
[36] | Tian, C.; Massignan, L.; Meyer, T.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 2383. |
[37] | Mei, R.; Sauermann, N.; Oliveira, J. C. A.; Ackermann, L. J. Am. Chem. Soc. 2018, 140, 7913. |
[38] | Mei, R.; Ma, W.; Zhang, Y.; Guo, X.; Ackermann, L. Org. Lett. 2019, 21, 6534. |
[39] | Cao, Y.; Yuan, Y.; Lin, Y.; Jiang, X.; Weng, Y.; Wang, T.; Bu, F.; Zeng, L.; Lei, A. Green Chem. 2020, 22, 1548. |
[40] | Tian, C.; Dhawa, U.; Scheremetjew, A.; Ackermann, L. ACS Catal. 2019, 9, 7690. |
[41] | Tang, S.; Wang, D.; Liu, Y.; Zeng, L.; Lei, A. Nat. Commun. 2018, 9, 798. |
[42] | Meyer, T. H.; Oliveira, J. C. A.; Sau, S. C.; Ang, N. W. J.; Ackermann, L. ACS Catal. 2018, 8, 9140. |
[43] | Shan, C.; Bai, R.; Lan, Y. Acta Phys.-Chim. Sin. 2019, 35, 940. (in Chinese) |
[43] | (单春晖, 白若鹏, 蓝宇, 物理化学学报, 2019, 35, 940.) |
[44] | Mei, R.; Fang, X.; He, L.; Sun, J.; Zou, L.; Ma, W.; Ackermann, L. Chem. Commun. 2020, 56, 1393. |
[45] | Shen, H.; Liu, T.; Cheng, D.; Yi, X.; Wang, Z.; Liu, L.; Song, D.; Ling, F.; Zhong, W. J. Org. Chem. 2020, 85, 13735. |
[46] | Qiu, Y.; Kong, W.-J.; Struwe, J.; Sauermann, N.; Rogge, T.; Scheremetjew, A.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5828. |
[47] | Qiu, Y.; Stangier, M.; Meyer, T. H.; Oliveira, J. C. A.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 14179. |
[48] | Sau, S.; Mei, R.; Struwe, J.; Ackermann, L. ChemSusChem 2019, 12, 3023. |
[49] | Chen, J.; Jin, L.; Zhou, J.; Jiang, X.; Yu, C. Tetrahedron Lett. 2019, 60, 2054. |
/
〈 |
|
〉 |