Chinese Journal of Organic Chemistry >
Research Progress of Vinyl/Aryl Phosphonium Salts in Organic Synthesis
Received date: 2021-07-31
Revised date: 2021-09-15
Online published: 2022-02-24
Supported by
National Natural Science Foundation of China(61805147); Large Instruments Open Foundation of Nantong University(KFJN2112); Large Instruments Open Foundation of Nantong University(KFJN2119); Large Instruments Open Foundation of Nantong University(KFJN2127); Postgraduate Research & Practice Innovation Program of Jiangsu Province(SJCX21_1450)
Phosphines have attracted much attention as efficient ligands, catalysts or stoichiometric reductants in organic synthesis. However, the application of phosphonium salts, as a kind of important derivatives of phosphines, has focused on Wittig reaction, Staudinger reaction or other reactions as intermediates. With the rapid development of new methods, the introdcution of vinyl/aryl groups not only makes a considerable progress in the applications of vinyl/aryl phosphonium salts, but provides novel strategies for the synthesis of bioactive or pharmaceutical molecules. The review is summarized based on the types of phosphonium salts and reactions to construct vinyl/aryl groups in recent years.
Key words: vinyl phosphonium salt; aryl phosphonium salt; organic synthesis
Weichun Huang , Xinyu Ding , You Zi . Research Progress of Vinyl/Aryl Phosphonium Salts in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2022 , 42(2) : 471 -486 . DOI: 10.6023/cjoc202107065
| [1] | Wittig, G.; Haag, W. Chem. Ber. 1955, 88, 1654. |
| [2] | Hoffmann, R. W. Angew. Chem., Int. Ed. 2001, 40, 1411. |
| [3] | Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635. |
| [4] | Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353. |
| [5] | Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380. |
| [6] | Mitsunobu, O. Synthesis 1981, 1. |
| [7] | Scheweizer, E. E. J. Am. Chem. Soc. 1964, 86, 2744. |
| [8] | Drach, B.; Brovarets, V.; Smolii, O. Russ. J. Gen. Chem. 2002, 72, 1661. |
| [9] | Kuźnik, A.; Mazurkiewicz, R.; Fryczkowska, B. Beilstein J. Org. Chem. 2017, 13, 2710. |
| [10] | Xu, S.; He, Z. RSC Adv. 2013, 3, 16885. |
| [11] | Ni, H.; Chan, W. L.; Lu, Y. Chem. Rev. 2018, 118, 9344. |
| [12] | Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049. |
| [13] | Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927. |
| [14] | Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588. |
| [15] | Lin, J. H.; Xiao, J. C. Acc. Chem. Res. 2020, 53, 1498. |
| [16] | Yu, J.; Lin, J.-H.; Yu, D.; Du, R.; Xiao, J.-C. Nat. Commun. 2019, 10, 5362. |
| [17] | Zhang, M.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2019, 58, 6079. |
| [18] | Yu, J.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2017, 56, 16669. |
| [19] | Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D.-H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2017, 56, 3196. |
| [20] | Deng, Z.; Liu, C.; Zeng, X. L.; Lin, J. H.; Xiao, J. C. J. Org. Chem. 2016, 81, 12084. |
| [21] | Deng, Z.; Lin, J. H.; Cai, J.; Xiao, J. C. Org. Lett. 2016, 18, 3206. |
| [22] | Hu, C.-C.; Hu, W.-Q.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2021, 242, 109695. |
| [23] | Hua, W.-Q.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2018, 208, 73. |
| [24] | Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 7373. |
| [25] | Heine, N. B.; Studer, A. Org Lett 2017, 19, 4150. |
| [26] | Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007. |
| [27] | Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741. |
| [28] | Corey, E. Angew. Chem., Int. Ed. 2002, 41, 1650. |
| [29] | Ismail, Z.; Hoffmann, H. J. Org. Chem. 1981, 46, 3549. |
| [30] | Dolbier Jr, W. R.; Burkholder, C. R.; Wicks, G. E.; Palenik, G. J.; Gawron, M. J. Am. Chem. Soc. 1985, 107, 7183. |
| [31] | Bonjouklian, R.; Ruden, R. A. J. Org. Chem. 1977, 42, 4095. |
| [32] | Nowakowska, Z. Eur. J. Med. Chem. 2007, 42, 125. |
| [33] | Mishra, N.; Arora, P.; Kumar, B.; Mishra, L. C.; Bhattacharya, A.; Awasthi, S. K.; Bhasin, V. K. Eur. J. Med. Chem. 2008, 43, 1530. |
| [34] | Baird, M. C. Chem. Rev. 2000, 100, 1471. |
| [35] | Willis, M. C. Chem. Rev. 2010, 110, 725. |
| [36] | McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. |
| [37] | Hoffmann, H.; Diehr, H. J. Chem. Ber. 1965, 98, 363. |
| [38] | Horner, L.; Hoffmann, H. Angew. Chem. 1956, 68, 473. |
| [39] | Richards, E.; Tebby, J.; Ward, R.; Williams, D. J. Chem. Soc. C 1969, 1542. |
| [40] | Tebby, J. C.; Wilson, I. F.; Griffiths, D. V. J. Chem. Soc., 1979, 2133. |
| [41] | Larpent, C.; Patin, H. Tetrahedron Lett. 1988, 29, 4577. |
| [42] | Larpent, C.; Meignan, G.; Patin, H. Tetrahedron Lett. 1991, 32, 2615. |
| [43] | Larpent, C.; Meignan, G. Tetrahedron Lett. 1993, 34, 4331. |
| [44] | Arbuzova, S. N.; Glotova, T. E.; Dvorko, M. Y.; Ushakov, I. A.; Gusarova, N. K.; Trofimov, B. A. ARKIVOC 2011, 11, 183. |
| [45] | Arbuzova, S. N.; Gusarova, N. K.; Glotova, T. E.; Ushakov, I. A.; Verkhoturova, S. I.; Korocheva, A. O.; Trofimov, B. A. Eur. J. Org. Chem. 2014, 2014, 639. |
| [46] | Pierce, B. M.; Simpson, B. F.; Ferguson, K. H.; Whittaker, R. E. Org. Biomol. Chem. 2018, 16, 6659. |
| [47] | Seifert, F.; Drikermann, D.; Steinmetzer, J.; Zi, Y.; Kupfer, S.; Vilotijevic, I. Org. Biomol. Chem. 2021, 19, 6092. |
| [48] | Zi, Y.; Schömberg, F.; Seifert, F.; Görls, H.; Vilotijevic, I. Org. Biomol. Chem. 2018, 16, 6341. |
| [49] | Schömberg, F.; Zi, Y.; Vilotijevic, I. Chem. Commun. 2018, 54, 3266. |
| [50] | Schömberg, F.; Perić, M.; Meyer, M.; Vilotijevic, I. Tetrahedron 2021, 99, 132457. |
| [51] | Huth, A.; Beetz, I.; Schumann, I. Tetrahedron 1989, 45, 6679. |
| [52] | Saa, J. M.; Martorell, G.; Garcia-Raso, A. J. Org. Chem. 1992, 57, 678. |
| [53] | Gilbert, A. M.; Wulff, W. D. J. Am. Chem. Soc. 1994, 116, 7449. |
| [54] | Ortiz, J.; Havlas, Z.; Hoffmann, R. Helv. Chim. Acta 1984, 67, 1. |
| [55] | Hwang, L. K.; Na, Y.; Lee, J.; Do, Y.; Chang, S. Angew. Chem., Int. Ed. 2005, 44, 6166. |
| [56] | Segelstein, B.; Butler, T.; Chenard, B. J. Org. Chem. 1995, 60, 12. |
| [57] | Sakamoto, M.; Shimizu, I.; Yamamoto, A. Chem. Lett. 1995, 24, 1101. |
| [58] | Zhang, X.; McNally, A. Angew. Chem., Int. Ed. 2017, 56, 9833. |
| [59] | Zhang, X.; McNally, A. ACS Catal. 2019, 9, 4862. |
| [60] | Che, Y. Y.; Yue, Y.; Lin, L. Z.; Pei, B.; Deng, X.; Feng, C. Angew. Chem., Int. Ed. 2020, 59, 16414. |
| [61] | Therkelsen, F. D.; Rottländer, M.; Thorup, N.; Pedersen, E. B. Org. Lett. 2004, 6, 1991. |
| [62] | Hatano, M.; Ito, O.; Suzuki, S.; Ishihara, K. Chem. Commun. 2010, 46, 2674. |
| [63] | Hatano, M.; Ito, O.; Suzuki, S.; Ishihara, K. J. Org. Chem. 2010, 75, 5008. |
| [64] | Zong, H.; Huang, H.; Liu, J.; Bian, G.; Song, L. J. Org. Chem. 2012, 77, 4645. |
| [65] | Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37, 3279. |
| [66] | Oi, S.; Moro, M.; Inoue, Y. Organometallics 2001, 20, 1036. |
| [67] | Liao, Y.-X.; Xing, C.-H.; He, P.; Hu, Q.-S. Org. Lett. 2008, 10, 2509. |
| [68] | Zou, T.; Pi, S.-S.; Li, J.-H. Org. Lett. 2008, 11, 453. |
| [69] | Zhou, F.; Li, C.-J. Nat. Commun. 2014, 5, 4254. |
| [70] | Anders, E.; Markus, F. Chem. Ber. 1989, 122, 113. |
| [71] | Shimada, M.; Sugimoto, O.; Sato, A. Heterocycles 2011, 83, 837. |
| [72] | Deng, Z.; Lin, J. H.; Xiao, J. C. Nat. Commun. 2016, 7, 10337. |
| [73] | Gaykar, R. N.; Bhunia, A.; Biju, A. T. J. Org. Chem. 2018, 83, 11333. |
| [74] | Koniarczyk, J. L.; Hesk, D.; Overgard, A.; Davies, I. W.; McNally, A. J. Am. Chem. Soc. 2018, 140, 1990. |
| [75] | Bugaenko, D. I.; Yurovskaya, M. A.; Karchava, A. V. Org. Lett. 2021, 23, 6099. |
| [76] | Szymczyk, M. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 264. |
| [77] | Cheema, Z. M.; Gondal, H. Y.; Raza, A. R.; Abbaskhan, A. Mol. Diversity 2020, 24, 455. |
| [78] | Mann, F. G.; Waston, J. J. Org. Chem. 1948, 13, 502. |
| [79] | Newkome, G. R.; Hager, D. C. J. Am. Chem. Soc. 1978, 100, 5567. |
| [80] | Uchida, Y.; Kozawa, H. Tetrahedron Lett. 1989, 30, 6365. |
| [81] | Uchida, Y.; Onoue, K.; Tada, N.; Nagao, F.; Kozawa, H.; Oae, S. Heteroat. Chem. 1990, 1, 295. |
| [82] | Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Science 2018, 362, 799. |
| [83] | Boyle, B. T.; Hilton, M. C.; McNally, A. J. Am. Chem. Soc. 2019, 141, 15441. |
| [84] | Koniarczyk, J. L.; Greenwood, J. W.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Angew. Chem., Int. Ed. 2019, 58, 14882. |
| [85] | Anders, E.; Markus, F. Tetrahedron Lett. 1987, 28, 2675. |
| [86] | Anders, E.; Markus, F. Chem. Ber. 1989, 122, 119. |
| [87] | Hilton, M. C.; Dolewski, R. D.; McNally, A. J. Am. Chem. Soc. 2016, 138, 13806. |
| [88] | Anderson, R. G.; Jett, B. M.; McNally, A. Tetrahedron 2018, 74, 3129. |
| [89] | Patel, C.; Mohnike, M.; Hilton, M. C.; McNally, A. Org. Lett. 2018, 20, 2607. |
| [90] | Anderson, R. G.; Jett, B. M.; McNally, A. Angew. Chem., Int. Ed. 2018, 57, 12514. |
| [91] | Zi, Y.; Schomberg, F.; Wagner, K.; Vilotijevic, I. Org. Lett. 2020, 22, 3407. |
| [92] | Zi, Y.; Wagner, K.; Schomberg, F.; Vilotijevic, I. Org. Biomol. Chem. 2020, 18, 5183. |
| [93] | Levy, J. N.; Alegre-Requena, J. V.; Liu, R.; Paton, R. S.; McNally, A. J. Am. Chem. Soc. 2020, 142, 11295. |
/
| 〈 |
|
〉 |