Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (2): 471-486.DOI: 10.6023/cjoc202107065 Previous Articles Next Articles
REVIEWS
收稿日期:
2021-07-31
修回日期:
2021-09-15
发布日期:
2022-02-24
通讯作者:
丁欣宇, 訾由
基金资助:
Weichun Huang, Xinyu Ding(), You Zi()
Received:
2021-07-31
Revised:
2021-09-15
Published:
2022-02-24
Contact:
Xinyu Ding, You Zi
Supported by:
Share
Weichun Huang, Xinyu Ding, You Zi. Research Progress of Vinyl/Aryl Phosphonium Salts in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 471-486.
[1] |
Wittig, G.; Haag, W. Chem. Ber. 1955, 88, 1654.
doi: 10.1002/cber.v88:11 |
[2] |
Hoffmann, R. W. Angew. Chem., Int. Ed. 2001, 40, 1411.
doi: 10.1002/1521-3773(20010417)40:8【-逻*辑*与-】#x00026;lt;【-逻*辑*与-】#x00026;gt;1.0.CO;2-K |
[3] |
Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
doi: 10.1002/hlca.19190020164 |
[4] |
Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.
doi: 10.1016/S0040-4020(01)92229-X |
[5] |
Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380.
doi: 10.1246/bcsj.40.2380 |
[6] |
Mitsunobu, O. Synthesis 1981, 1.
|
[7] |
Scheweizer, E. E. J. Am. Chem. Soc. 1964, 86, 2744.
|
[8] |
Drach, B.; Brovarets, V.; Smolii, O. Russ. J. Gen. Chem. 2002, 72, 1661.
doi: 10.1023/A:1023320608504 |
[9] |
Kuźnik, A.; Mazurkiewicz, R.; Fryczkowska, B. Beilstein J. Org. Chem. 2017, 13, 2710.
doi: 10.3762/bjoc.13.269 pmid: 29564008 |
[10] |
Xu, S.; He, Z. RSC Adv. 2013, 3, 16885.
doi: 10.1039/c3ra42088d |
[11] |
Ni, H.; Chan, W. L.; Lu, Y. Chem. Rev. 2018, 118, 9344.
doi: 10.1021/acs.chemrev.8b00261 |
[12] |
Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049.
doi: 10.1021/acs.chemrev.8b00081 |
[13] |
Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
doi: 10.1039/C4CS00054D |
[14] |
Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588.
doi: 10.1039/c3cc47368f |
[15] |
Lin, J. H.; Xiao, J. C. Acc. Chem. Res. 2020, 53, 1498.
doi: 10.1021/acs.accounts.0c00244 |
[16] |
Yu, J.; Lin, J.-H.; Yu, D.; Du, R.; Xiao, J.-C. Nat. Commun. 2019, 10, 5362.
doi: 10.1038/s41467-019-13359-z |
[17] |
Zhang, M.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2019, 58, 6079.
doi: 10.1002/anie.v58.18 |
[18] |
Yu, J.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2017, 56, 16669.
doi: 10.1002/anie.201710186 |
[19] |
Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D.-H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2017, 56, 3196.
doi: 10.1002/anie.201611761 |
[20] |
Deng, Z.; Liu, C.; Zeng, X. L.; Lin, J. H.; Xiao, J. C. J. Org. Chem. 2016, 81, 12084.
doi: 10.1021/acs.joc.6b02723 |
[21] |
Deng, Z.; Lin, J. H.; Cai, J.; Xiao, J. C. Org. Lett. 2016, 18, 3206.
doi: 10.1021/acs.orglett.6b01425 |
[22] |
Hu, C.-C.; Hu, W.-Q.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2021, 242, 109695.
doi: 10.1016/j.jfluchem.2020.109695 |
[23] |
Hua, W.-Q.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2018, 208, 73.
doi: 10.1016/j.jfluchem.2018.01.013 |
[24] |
Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 7373.
doi: 10.1021/acs.joc.7b01041 |
[25] |
Heine, N. B.; Studer, A. Org Lett 2017, 19, 4150.
doi: 10.1021/acs.orglett.7b02109 |
[26] |
Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007.
doi: 10.1021/cr00013a013 |
[27] |
Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741.
doi: 10.1021/cr00018a006 |
[28] |
Corey, E. Angew. Chem., Int. Ed. 2002, 41, 1650.
doi: 10.1002/(ISSN)1521-3773 |
[29] |
Ismail, Z.; Hoffmann, H. J. Org. Chem. 1981, 46, 3549.
doi: 10.1021/jo00330a036 |
[30] |
Dolbier Jr, W. R.; Burkholder, C. R.; Wicks, G. E.; Palenik, G. J.; Gawron, M. J. Am. Chem. Soc. 1985, 107, 7183.
doi: 10.1021/ja00310a075 |
[31] |
Bonjouklian, R.; Ruden, R. A. J. Org. Chem. 1977, 42, 4095.
doi: 10.1021/jo00445a024 |
[32] |
Nowakowska, Z. Eur. J. Med. Chem. 2007, 42, 125.
pmid: 17112640 |
[33] |
Mishra, N.; Arora, P.; Kumar, B.; Mishra, L. C.; Bhattacharya, A.; Awasthi, S. K.; Bhasin, V. K. Eur. J. Med. Chem. 2008, 43, 1530.
pmid: 17977622 |
[34] |
Baird, M. C. Chem. Rev. 2000, 100, 1471.
pmid: 11749272 |
[35] |
Willis, M. C. Chem. Rev. 2010, 110, 725.
doi: 10.1021/cr900096x |
[36] |
McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
doi: 10.1021/cr100371y pmid: 21428440 |
[37] |
Hoffmann, H.; Diehr, H. J. Chem. Ber. 1965, 98, 363.
doi: 10.1002/cber.v98:2 |
[38] |
Horner, L.; Hoffmann, H. Angew. Chem. 1956, 68, 473.
doi: 10.1002/(ISSN)1521-3757 |
[39] |
Richards, E.; Tebby, J.; Ward, R.; Williams, D. J. Chem. Soc. C 1969, 1542.
|
[40] |
Tebby, J. C.; Wilson, I. F.; Griffiths, D. V. J. Chem. Soc., 1979, 2133.
|
[41] |
Larpent, C.; Patin, H. Tetrahedron Lett. 1988, 29, 4577.
doi: 10.1016/S0040-4039(00)80551-1 |
[42] |
Larpent, C.; Meignan, G.; Patin, H. Tetrahedron Lett. 1991, 32, 2615.
doi: 10.1016/S0040-4039(00)78799-5 |
[43] |
Larpent, C.; Meignan, G. Tetrahedron Lett. 1993, 34, 4331.
doi: 10.1016/S0040-4039(00)79342-7 |
[44] |
Arbuzova, S. N.; Glotova, T. E.; Dvorko, M. Y.; Ushakov, I. A.; Gusarova, N. K.; Trofimov, B. A. ARKIVOC 2011, 11, 183.
|
[45] |
Arbuzova, S. N.; Gusarova, N. K.; Glotova, T. E.; Ushakov, I. A.; Verkhoturova, S. I.; Korocheva, A. O.; Trofimov, B. A. Eur. J. Org. Chem. 2014, 2014, 639.
doi: 10.1002/ejoc.v2014.3 |
[46] |
Pierce, B. M.; Simpson, B. F.; Ferguson, K. H.; Whittaker, R. E. Org. Biomol. Chem. 2018, 16, 6659.
doi: 10.1039/c8ob01848k pmid: 30187050 |
[47] |
Seifert, F.; Drikermann, D.; Steinmetzer, J.; Zi, Y.; Kupfer, S.; Vilotijevic, I. Org. Biomol. Chem. 2021, 19, 6092.
doi: 10.1039/D1OB00909E |
[48] |
Zi, Y.; Schömberg, F.; Seifert, F.; Görls, H.; Vilotijevic, I. Org. Biomol. Chem. 2018, 16, 6341.
doi: 10.1039/C8OB01343H |
[49] |
Schömberg, F.; Zi, Y.; Vilotijevic, I. Chem. Commun. 2018, 54, 3266.
doi: 10.1039/C8CC00058A |
[50] |
Schömberg, F.; Perić, M.; Meyer, M.; Vilotijevic, I. Tetrahedron 2021, 99, 132457.
doi: 10.1016/j.tet.2021.132457 |
[51] |
Huth, A.; Beetz, I.; Schumann, I. Tetrahedron 1989, 45, 6679.
doi: 10.1016/S0040-4020(01)89138-9 |
[52] |
Saa, J. M.; Martorell, G.; Garcia-Raso, A. J. Org. Chem. 1992, 57, 678.
doi: 10.1021/jo00028a051 |
[53] |
Gilbert, A. M.; Wulff, W. D. J. Am. Chem. Soc. 1994, 116, 7449.
doi: 10.1021/ja00095a075 |
[54] |
Ortiz, J.; Havlas, Z.; Hoffmann, R. Helv. Chim. Acta 1984, 67, 1.
doi: 10.1002/(ISSN)1522-2675 |
[55] |
Hwang, L. K.; Na, Y.; Lee, J.; Do, Y.; Chang, S. Angew. Chem., Int. Ed. 2005, 44, 6166.
doi: 10.1002/(ISSN)1521-3773 |
[56] |
Segelstein, B.; Butler, T.; Chenard, B. J. Org. Chem. 1995, 60, 12.
doi: 10.1021/jo00106a006 |
[57] |
Sakamoto, M.; Shimizu, I.; Yamamoto, A. Chem. Lett. 1995, 24, 1101.
doi: 10.1246/cl.1995.1101 |
[58] |
Zhang, X.; McNally, A. Angew. Chem., Int. Ed. 2017, 56, 9833.
doi: 10.1002/anie.v56.33 |
[59] |
Zhang, X.; McNally, A. ACS Catal. 2019, 9, 4862.
doi: 10.1021/acscatal.9b00851 pmid: 31656687 |
[60] |
Che, Y. Y.; Yue, Y.; Lin, L. Z.; Pei, B.; Deng, X.; Feng, C. Angew. Chem., Int. Ed. 2020, 59, 16414.
doi: 10.1002/anie.v59.38 |
[61] |
Therkelsen, F. D.; Rottländer, M.; Thorup, N.; Pedersen, E. B. Org. Lett. 2004, 6, 1991.
pmid: 15176801 |
[62] |
Hatano, M.; Ito, O.; Suzuki, S.; Ishihara, K. Chem. Commun. 2010, 46, 2674.
doi: 10.1039/b926243a |
[63] |
Hatano, M.; Ito, O.; Suzuki, S.; Ishihara, K. J. Org. Chem. 2010, 75, 5008.
doi: 10.1021/jo100563p |
[64] |
Zong, H.; Huang, H.; Liu, J.; Bian, G.; Song, L. J. Org. Chem. 2012, 77, 4645.
doi: 10.1021/jo3004277 pmid: 22524204 |
[65] |
Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37, 3279.
doi: 10.1002/(ISSN)1521-3773 |
[66] |
Oi, S.; Moro, M.; Inoue, Y. Organometallics 2001, 20, 1036.
doi: 10.1021/om0009684 |
[67] |
Liao, Y.-X.; Xing, C.-H.; He, P.; Hu, Q.-S. Org. Lett. 2008, 10, 2509.
doi: 10.1021/ol800774c |
[68] |
Zou, T.; Pi, S.-S.; Li, J.-H. Org. Lett. 2008, 11, 453.
doi: 10.1021/ol802529p |
[69] |
Zhou, F.; Li, C.-J. Nat. Commun. 2014, 5, 4254.
doi: 10.1038/ncomms5254 |
[70] |
Anders, E.; Markus, F. Chem. Ber. 1989, 122, 113.
doi: 10.1002/cber.v122:1 |
[71] |
Shimada, M.; Sugimoto, O.; Sato, A. Heterocycles 2011, 83, 837.
doi: 10.3987/COM-11-12154 |
[72] |
Deng, Z.; Lin, J. H.; Xiao, J. C. Nat. Commun. 2016, 7, 10337.
doi: 10.1038/ncomms10337 |
[73] |
Gaykar, R. N.; Bhunia, A.; Biju, A. T. J. Org. Chem. 2018, 83, 11333.
doi: 10.1021/acs.joc.8b01549 pmid: 29989411 |
[74] |
Koniarczyk, J. L.; Hesk, D.; Overgard, A.; Davies, I. W.; McNally, A. J. Am. Chem. Soc. 2018, 140, 1990.
doi: 10.1021/jacs.7b11710 pmid: 29377684 |
[75] |
Bugaenko, D. I.; Yurovskaya, M. A.; Karchava, A. V. Org. Lett. 2021, 23, 6099.
doi: 10.1021/acs.orglett.1c02165 |
[76] |
Szymczyk, M. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 264.
doi: 10.1080/10426507.2016.1244203 |
[77] |
Cheema, Z. M.; Gondal, H. Y.; Raza, A. R.; Abbaskhan, A. Mol. Diversity 2020, 24, 455.
doi: 10.1007/s11030-019-09966-z |
[78] |
Mann, F. G.; Waston, J. J. Org. Chem. 1948, 13, 502.
doi: 10.1021/jo01162a007 |
[79] |
Newkome, G. R.; Hager, D. C. J. Am. Chem. Soc. 1978, 100, 5567.
doi: 10.1021/ja00485a053 |
[80] |
Uchida, Y.; Kozawa, H. Tetrahedron Lett. 1989, 30, 6365.
doi: 10.1016/S0040-4039(01)93895-X |
[81] |
Uchida, Y.; Onoue, K.; Tada, N.; Nagao, F.; Kozawa, H.; Oae, S. Heteroat. Chem. 1990, 1, 295.
doi: 10.1002/hc.v1:4 |
[82] |
Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Science 2018, 362, 799.
doi: 10.1126/science.aas8961 |
[83] |
Boyle, B. T.; Hilton, M. C.; McNally, A. J. Am. Chem. Soc. 2019, 141, 15441.
doi: 10.1021/jacs.9b08504 |
[84] |
Koniarczyk, J. L.; Greenwood, J. W.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Angew. Chem., Int. Ed. 2019, 58, 14882.
doi: 10.1002/anie.v58.42 |
[85] |
Anders, E.; Markus, F. Tetrahedron Lett. 1987, 28, 2675.
doi: 10.1016/S0040-4039(00)96178-1 |
[86] |
Anders, E.; Markus, F. Chem. Ber. 1989, 122, 119.
doi: 10.1002/cber.v122:1 |
[87] |
Hilton, M. C.; Dolewski, R. D.; McNally, A. J. Am. Chem. Soc. 2016, 138, 13806.
doi: 10.1021/jacs.6b08662 |
[88] |
Anderson, R. G.; Jett, B. M.; McNally, A. Tetrahedron 2018, 74, 3129.
doi: 10.1016/j.tet.2017.12.040 pmid: 30479455 |
[89] |
Patel, C.; Mohnike, M.; Hilton, M. C.; McNally, A. Org. Lett. 2018, 20, 2607.
doi: 10.1021/acs.orglett.8b00813 |
[90] |
Anderson, R. G.; Jett, B. M.; McNally, A. Angew. Chem., Int. Ed. 2018, 57, 12514.
doi: 10.1002/anie.201807322 |
[91] |
Zi, Y.; Schomberg, F.; Wagner, K.; Vilotijevic, I. Org. Lett. 2020, 22, 3407.
doi: 10.1021/acs.orglett.0c00882 |
[92] |
Zi, Y.; Wagner, K.; Schomberg, F.; Vilotijevic, I. Org. Biomol. Chem. 2020, 18, 5183.
doi: 10.1039/D0OB00684J |
[93] |
Levy, J. N.; Alegre-Requena, J. V.; Liu, R.; Paton, R. S.; McNally, A. J. Am. Chem. Soc. 2020, 142, 11295.
doi: 10.1021/jacs.0c04674 |
[1] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[2] | Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147. |
[3] | Ran Zhou, Chunmei Yuan, Tao Zhang, Piao Mao, Yi Liu, Kaini Meng, Hui Xin, Wei Xue. Design, Synthesis and Bioactivity of Chalcone Derivative Containing Quinazolinone [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3196-3209. |
[4] | Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933. |
[5] | Linsheng Bai, Peng Hong, Anguo Ying. Research Progress of Functional Polyacrylonitrile Fiber in Promoting Organic Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1241-1270. |
[6] | Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240. |
[7] | Qian Dou, Taimin Wang, Lijing Fang, Hongbin Zhai, Bin Cheng. Recent Development of Photoinduced Iron-Catalysis in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1386-1415. |
[8] | Shiquan Gao, Chuangjun Liu, Junfeng Yang, Junliang Zhang. Cobalt-Catalyzed Electrochemical Reductive Coupling of Alkynes and Alkenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1559-1565. |
[9] | Biao Ma, Miaomiao Zhang, Zhanyu Li, Jinsong Peng, Chunxia Chen. Recent Advance of Transition Metal-Free Catalyzed Suzuki-Type Cross Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 455-470. |
[10] | Silin Chen, Yunhui Yang, Chao Chen, Congyang Wang. Advances in Transition-Metal-Catalyzed Keto Carbonyl-Directed C—H Bond Functionalization Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 1-16. |
[11] | Runye Gao, Lingling Zuo, Fang Wang, Chuanying Li, Huajiang Jiang, Pinhua Li, Lei Wang. Recent Advances in Controllable Organic Reactions Induced by Visible Light without External Photocatalyst [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 1883-1903. |
[12] | Kexin Li, Qingyuan Yang, Pengpeng Zhang, Wuyuan Zhang. Research Progress of Peroxygenase-Catalyzed Reactions Driven by in-situ Generation of H2O2 [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 732-741. |
[13] | Shaohui Yang, Jingcheng Song, Daoqing Dong, Hao Yang, Mengyu Zhou, Huishu Zhang, Zuli Wang. Progress of N-Amino Pyridinium Salts as Nitrogen Radical Precursors in Visible Light Induced C—N Bond Formation Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4099-4110. |
[14] | Siyu Mu, Hongxia Li, Zhilin Wu, Junmei Peng, Jinyang Chen, Weimin He. Electrocatalytic Three-Component Synthesis of 4-Bromopyrazoles from Acetylacetone, Hydrazine and Diethyl Bromomalonate [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4292-4299. |
[15] | Rongnan Yi, Dongxian Liu, Qilin Wu, Mingming Zhao, Yong Wang, Zheng Wang. Electrochemical Oxidated-Iodide Promoted α-H Aryl(alkyl)selenation of Acetone for the Preparation of α-Aryl(alkyl)selenoacetones [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3726-3732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||