REVIEWS

Research Progress in the Cyclization Reactions with Propargyl Alcohols

  • Xiaozheng Zhao ,
  • Qinqin Ling ,
  • Guiyan Cao ,
  • Xing Huo ,
  • Xiaolong Zhao ,
  • Yingpeng Su
Expand
  • a College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070
    b College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000
* Corresponding author. E-mail:

Received date: 2022-03-20

  Revised date: 2022-06-12

  Online published: 2022-06-23

Supported by

National Natural Science Foundation of China(21961034); National Natural Science Foundation of China(21502154); National Natural Science Foundation of China(21362033); Gansu Provincial Science and Technology Program(21JR1RA232); Industrial Support Program of Gansu Province for Colleges(2021CYZC-17)

Abstract

Propargyl alcohols as a classical bifunctional group compounds possess alcohol hydroxyl group and carbon-carbon triple bond. Due to their special structure, they show unique reaction characteristics, and are employed in reactions via activating its alcoholic hydroxyl group or triple bond. The most typical reaction for propargyl alcohols is various cyclization reactions with different compounds to assemble a richer variety of cyclized compounds such as cyclopentene, pyrrole, furan, cyclic carbonate, pyran, pyridine and azepine cyclic compounds. The recent research progress in the cyclization reaction of propargyl alcohols with various compounds, including [3+2], [2+3], [3+3], [4+2], [2+4], [4+1], [3+4] and other types of cyclization reactions, is summarized.

Cite this article

Xiaozheng Zhao , Qinqin Ling , Guiyan Cao , Xing Huo , Xiaolong Zhao , Yingpeng Su . Research Progress in the Cyclization Reactions with Propargyl Alcohols[J]. Chinese Journal of Organic Chemistry, 2022 , 42(9) : 2605 -2639 . DOI: 10.6023/cjoc202203037

References

[1]
(a) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208.
[1]
(b) Xu, W.; Zhao, S.; Luo, X.; Song, J.; Liu, J.; Bi, X.; Liao, P. Chin. J. Org. Chem. 2015, 35, 2095. (in Chinese)
[1]
(徐文帅, 赵寿经, 骆晓沛, 宋金娜, 刘建全, 毕锡合, 廖沛球, 有机化学, 2015, 35, 2095.)
[2]
(a) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462.
[2]
(b) Kazem Shiroodi, R.; Gevorgyan, V. Chem. Soc. Rev. 2013, 42, 4991.
[2]
(c) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448.
[2]
(d) Zhang, X.; Lü, C.; Li, P.; Fu, B.; Yao, W. Chin. J. Org. Chem. 2016, 36, 1287. (in Chinese)
[2]
(张小祥, 吕昌, 李萍, 付博, 姚薇薇, 有机化学, 2016, 36, 1287.)
[3]
(a) Bi, X.; Zhang, L.; Fang, G.; Kumar, R. Synthesis 2015, 47, 2317.
[3]
(b) Chan, P.; Ayers, B. Synlett 2015, 26, 1305.
[3]
(c) Weibel, J.-M.; Blanc, A.; Pale, P. Chem. Rev. 2008, 108, 3149.
[3]
(d) Zhu, Y.; Sun, L.; Lu, P.; Wang, Y. ACS Catal. 2014, 4, 1911.
[4]
Qian, H.; Huang, D.; Bi, Y.; Yan, G. Adv. Synth. Catal. 2019, 361, 3240.
[5]
Liu, X.-Y.; Liu, Y.-L.; Chen, L. Adv. Synth. Catal. 2020, 362, 5170
[6]
Fang, Z.; Liu, J.; Liu, Q.; Bi, X. Angew. Chem., nt. Ed. 2014, 53, 7209.
[7]
Hao, L.; Pan, Y.; Wang, T.; Lin, M.; Chen, L.; Zhan, Z.-P. Adv. Synth. Catal. 2010, 352, 3215
[8]
Li, N.; Wang, T.-Y.; Gong, L.-Z.; Zhang, L. Chem.-Eur. J. 2015, 21, 3585.
[9]
Bai, J.-F.; Zhao, L.; Wang, F.; Yan, F.; Kano, T.; Maruoka, K.; Li, Y. Org. Lett. 2020, 22, 5439.
[10]
Wang, X.; Pan, Y.-M.; Huang, X.-C.; Mao, Z.-Y.; Wang, H.-S. Org. Biomol. Chem. 2014, 12, 2028.
[11]
Chong, Q.; Xin, X.; Wang, C.; Wu, F.; Wang, H.; Shi, J.-C.; Wan, B. J. Org. Chem. 2014, 79, 2105.
[12]
Hosseyni, S.; Su, Y.; Shi, X. Org. Lett. 2015, 17, 6010.
[13]
Trofimov, B. A.; Shemyakina, O. A.; Mal'kina, A. G.; Ushakov, I. A.; Kazheva, O. N.; Alexandrov, G. G.; Dyachenko, O. A. Org. Lett. 2010, 12, 3200.
[14]
Minakata, S.; Sasaki, I.; Ide, T. Angew. Chem., nt. Ed. 2010, 49, 1309.
[15]
Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T. J. Am. Chem. Soc. 2010, 132, 4072.
[16]
Yuan, G.-Q.; Zhu, G.-J.; Chang, X.-Y.; Qi, C.-R.; Jiang, H.-F. Tetrahedron 2010, 66, 9981.
[17]
Ca, N. D.; Gabriele, B.; Ruffolo, G.; Veltri, L.; Zanetta, T.; Costa, M. Adv. Synth. Catal. 2011, 353, 133.
[18]
Song, Q.-W.; Yu, B.; Li, X.-D.; Ma, R.; Diao, Z.-F.; Li, R.-G.; Li, W.; He, L.-N. Green Chem. 2014, 16, 1633.
[19]
Dabral, S.; Bayarmagnai, B.; Hermsen, M.; Schießl, J.; Mormul, V.; Hashmi, A. S. K.; Schaub, T. Org. Lett. 2019, 21, 1422.
[20]
Yan, S.; Zhou, R.; Han, F.; Feng, M.; Miao, C.; Zhang, S.; Ai, S. Catal. Sci. Technol. 2020, 10, 736.
[21]
Yaragorla, S.; Pareek, A.; Dada, R. Adv. Synth. Catal. 2017, 359, 3068.
[22]
Yuan, F.-Q.; Han, F.-S. Adv. Synth. Catal. 2013, 355, 537.
[23]
Yaragorla, S.; Dada, R.; Singh, G.; Pareek, A.; Rana, M.; Sharma, A. K. ChemistrySelect 2016, 1, 6902.
[24]
Pareek, A.; Dada, R.; Rana, M.; Sharma, A. K.; Yaragorla, S. RSC Adv. 2016, 6, 89732.
[25]
Yaragorla, S.; Dada, R.; Pareek, A.; Singh, G. RSC Adv. 2016, 6, 28865.
[26]
Viji, M.; Nagarajan, R. RSC Adv. 2012, 2, 10544.
[27]
Kumar, M. P.; Liu, R.-S. J. Org. Chem. 2006, 71, 4951.
[28]
Bai, L.; Wang, Y.; Wang, S.; Kong, D.; Fu, Y.; Peng, D.; Wen, L.; Chen, X. Chin. J. Org. Chem. 2018, 38, 3242. (in Chinese)
[28]
(白丽丽, 王颖, 王烁今, 孔杜林, 付艳, 彭德乾, 文丽君, 陈训, 有机化学, 2018, 38, 3242.)
[29]
Ponra, S.; Gohain, M.; Donka, R.; van Tonder, J. H.; Bezuidenhoudt, B. C. B. Tetrahedron Lett. 2018, 59, 2909.
[30]
Song, X.; Gao, C.; Li, B.; Zhang, X.; Fan, X. J. Org. Chem. 2018, 83, 8509.
[31]
Wang, S.; Chai, Z.; Wei, Y.; Zhu, X.; Zhou, S.; Wang, S. Org. Lett. 2014, 16, 3592.
[32]
Zeng, H.; Ju, J.; Hua, R. Tetrahedron Lett. 2011, 52, 3926.
[33]
Yaragorla, S.; Pareek, A.; Dada, R. Tetrahedron Lett. 2017, 58, 4642.
[34]
Han, Y.-P.; Li, X.-S.; Zhu, X.-Y.; Sun, Z.; Li, M.; Wang, Y.-Z.; Liang, Y.-M. Adv. Synth. Catal. 2018, 360, 870.
[35]
Liu, Y.; Barry, B.-D.; Yu, H.; Liu, J.; Liao, P.; Bi, X. Org. Lett. 2013, 15, 2608.
[36]
Kitamura, M.; Nishimura, T.; Otsuka, K.; Shimooka, H.; Okauchi, T. Tetrahedron Lett. 2020, 61, 151853.
[37]
Su, J.; Ju, J.; Hua, R. Curr. Org. Synth. 2012, 9, 273.
[38]
Shao, Y.; Zhu, K.; Qin, Z.; Li, E.; Li, Y. J. Org. Chem. 2013, 78, 5731.
[39]
Yin, G.; Zhu, Y.; Wang, N.; Lu, P.; Wang, Y. Tetrahedron 2013, 69, 8353.
[40]
Wang, M.; Tan, C.; He, Q.; Xie, Y.; Yang, C. Org. Biomol. Chem. 2013, 11, 2574.
[41]
Zhang, S.; Shan, C.; Zhang, S.; Yuan, L.; Wang, J.; Tung, C.-H.; Xing, L.-B.; Xu, Z. Org. Biomol. Chem. 2016, 14, 10973.
[42]
Shao, M.; Wu, Y.; Feng, Z.; Gu, X.; Wang, S. Org. Biomol. Chem. 2016, 14, 2515.
[43]
Wu, Y.; Shao, M.; Feng, Z.; Gu, X.; Hong, Y.; Cui, Q.; Ren, L.; Wang, S. Asian J. Org. Chem. 2017, 6, 76.
[44]
Li, X.-S.; Han, Y.-P.; Xu, D.-T.; Li, M.; Wei, W.-X.; Liang, Y.-M. J. Org. Chem. 2020, 85, 2626.
[45]
Wang, L.; Xie, X.; Liu, Y. Angew. Chem., nt. Ed. 2013, 52, 13302.
[46]
Rueping, M.; Dufour, J.; Maji, M. S. Chem. Commun. 2012, 48, 3406.
[47]
Anukumar, A.; Tamizmani, M.; Jeganmohan, M. J. Org. Chem. 2018, 83, 8567.
[48]
Kumar, S.; Nair, A. M.; Volla, C. M. R. Chem. Commun. 2021, 57, 6280.
[49]
Li, Y.; Fang, F.; Zhou, J.; Li, J.; Wang, R.; Liu, H.; Zhou, Y. Adv. Synth. Catal. 2021, 363, 3305.
[50]
Wang, T.-T.; Jin, H.-S.; Cao, M.-M.; Wang, R.-B.; Zhao, L.-M. Org. Lett. 2021, 23, 5952.
[51]
Luo, F.; He, S.; Gou, Q.; Chen, J.; Zhang, M. Tetrahedron Lett. 2021, 64, 152724.
[52]
Qi, C.; Jiang, H.; Huang, L.; Yuan, G.; Ren, Y. Org. Lett. 2011, 13, 5520.
[53]
Wang, T.; Shi, S.; Hansmann, M. M.; Rettenmeier, E.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem., nt. Ed. 2014, 53, 3715
[54]
Zhang, B.; Wang, T.; Zhang, Z. J. Org. Chem. 2017, 82, 11644
[55]
Wang, J.; Yao, X.; Wang, T.; Han, J.; Zhang, J.; Zhang, X.; Wang, P.; Zhang, Z. Org. Lett. 2015, 17, 5124.
[56]
Shi, T.; Guo, X.; Teng, S.; Hu, W. Chem. Commun. 2015, 51, 15204.
[57]
Le, Z.; Ying, J.; Wu, X.-F. Org. Chem. Front. 2019, 6, 3158.
[58]
Ying, J.; Le, Z.; Wu, X.-F. Org. Chem. Front. 2020, 7, 2757.
[59]
Hsu, Y.-C.; Hsieh, S.-A.; Li, P.-H.; Liu, R.-S. Chem. Commun. 2018, 54, 2114.
[60]
Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Iazzetti, A. Org. Lett. 2016, 18, 3511.
[61]
Han, Y.-P.; Song, X.-R.; Qiu, Y.-F.; Zhang, H.-R.; Li, L.-H.; Jin, D.-P.; Sun, X.-Q.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2016, 18, 940.
[62]
Selvaraj, K.; Debnath, S.; Swamy, K. C. K. Org. Lett. 2019, 21, 5447.
[63]
Yin, G.; Zhu, Y.; Lu, P.; Wang, Y. J. Org. Chem. 2011, 76, 8922.
[64]
Xu, J.; Zhao, J.; Jia, Z.; Zhang, J. Synth. Commun. 2011, 41, 858.
[65]
Liu, H.; Hua, R. Tetrahedron 2016, 72, 1200.
[66]
Hussain, M. K.; Ansari, M. I.; Kant, R.; Hajela, K. Org. Lett. 2014, 16, 560.
[67]
Li, X.-S.; Xu, D.-T.; Niu, Z.-J.; Li, M.; Shi, W.-Y.; Wang, C.-T.; Wei, W.-X.; Liang, Y.-M. Org. Lett. 2021, 23, 832.
[68]
Zhang, L.; Zhao, J.; Jiang, Y.; Zhang, X.; Fan, X. Org. Chem. Front. 2021, 8, 3734.
[69]
Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
[70]
Morita, N.; Miyamoto, M.; Yoda, A.; Yamamoto, M.; Ban, S.; Hashimoto, Y.; Tamura, O. Tetrahedron Lett. 2016, 57, 4460.
[71]
Egi, M.; Azechi, K.; Saneto, M.; Shimizu, K.; Akai, S. J. Org. Chem. 2010, 75, 2123
[72]
Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Molinaro, C.; Verdiglione, R. J. Org. Chem. 2014, 79, 401
[73]
Tharra, P.; Baire, B. J. Org. Chem. 2015, 80, 8314
[74]
Egi, M.; Ota, Y.; Nishimura, Y.; Shimizu, K.; Azechi, K.; Akai, S. Org. Lett. 2013, 15, 4150
[75]
Qiu, Y.-F.; Ye, Y.-Y.; Song, X.-R.; Zhu, X.-Y.; Yang, F.; Song, B.; Wang, J.; Hua, H.-L.; He, Y.-T.; Han, Y.-P.; Liu, X.-Y.; Liang, Y.-M. Chem.-Eur. J. 2015, 21, 3480.
[76]
Li, R.; Chen, X.; Song, X.-R.; Ding, H.; Wang, P.; Xiao, Q.; Liang, Y.-M. Adv. Synth. Catal. 2017, 359, 3962.
Outlines

/