化学学报 ›› 2020, Vol. 78 ›› Issue (4): 289-298.DOI: 10.6023/A20020027 上一篇 下一篇
研究展望
廖港, 吴勇杰, 史炳锋
投稿日期:
2020-02-08
发布日期:
2020-03-12
通讯作者:
史炳锋
E-mail:bfshi@zju.edu.cn
作者简介:
廖港,博士后,2018年毕业于浙江大学,获理学博士学位,导师为史炳锋教授.同年在浙江大学化学系进行博士后研究工作.主要研究方向为过渡金属催化不对称碳氢键官能团化;吴勇杰,2017年在浙江科技学院获学士学位,现在在浙江大学史炳锋教授的指导下攻读博士学位.主要研究方向为过渡金属催化不对称碳氢键官能团化;史炳锋,博士,教授,独立课题组组长.2001年本科毕业于南开大学化学系,2006年博士毕业于中国科学院上海有机化学研究所,导师为俞飚研究员.2006~2007年在University of California,San Diego从事博士后研究,2007~2010年加入The Scripps Research Institute从事博士后研究,导师余金权教授.2010年4月加入浙江大学化学系,任独立课题组组长,博士生导师.独立工作以来,以通讯作者发表研究论文九十余篇,主要研究领域为过渡金属催化的惰性键活化及其在天然产物全合成中的应用.
基金资助:
Liao Gang, Wu Yong-Jie, Shi Bing-Feng
Received:
2020-02-08
Published:
2020-03-12
Supported by:
文章分享
过渡金属催化的碳氢键活化是合成有机化合物最有效的工具之一,基于底物本身官能团或者共价键连接的导向基策略是目前实现碳氢键选择性活化的主要手段.非共价作用在分子生物学、超分子化学、材料科学及药物研发中具有重要意义,近年来,非共价作用也被应用于过渡金属催化的惰性碳氢键的选择性活化.本文总结了非共价作用在选择性碳氢键活化领域的研究进展,并按照非共价键的作用类型,将其分为氢键作用、离子对作用、路易斯酸碱对作用和静电作用等,探讨了催化体系中心金属、配体和底物间相互作用力的模式,并展望了未来研究工作的方向.
廖港, 吴勇杰, 史炳锋. 非共价作用在过渡金属催化的选择性碳氢键活化中的应用[J]. 化学学报, 2020, 78(4): 289-298.
Liao Gang, Wu Yong-Jie, Shi Bing-Feng. Noncovalent Interaction in Transition Metal-Catalyzed Selective C-H Activation[J]. Acta Chimica Sinica, 2020, 78(4): 289-298.
[1] For recent reviews on C-H activation, see:(a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (c) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (d) Pan, F.; Shi, Z. Acta Chim. Sinica 2012, 70, 1679. (潘菲, 施章杰, 化学学报, 2012, 70, 1679.) (e) Yuan, Y.; Song, S.; Jiao, N. Acta Chim. Sinica 2015, 73, 1231. (袁逸之, 宋颂, 焦宁, 化学学报, 2015, 73, 1231.) (f) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front. 2014, 1, 843. (g) Xu, J.; Lu, P.; Ye, J.; Liu, G. Acta Chim. Sinica 2015, 73, 1294. (徐佳斌, 陈品红, 叶金星, 刘国生, 化学学报, 2015, 73, 1294.) (h) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053. (i) He, G.; Wang, B.; Nack, W. A.; Chen, G. Acc. Chem. Res. 2016, 49, 635. (j) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028. (k) Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787. (l) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev., 2017, 117, 8754. (m) Huang, J.; Gu, Q.; You, S.-L. Chin. J. Org. Chem. 2018, 38, 51. (黄家翩, 顾庆, 游书力, 有机化学, 2018, 38, 51.) (n) Ren, Q.; Nie, B.; Zhang, Y.; Zhang, J. Chin. J. Org. Chem. 2018, 38, 2465. (任青云, 聂飚, 张英俊, 张霁, 有机化学, 2018, 38, 2465). (o) Zhao, K.; Yang, L.; Liu, J.; Xia, C. R. Chin. J. Org. Chem. 2018, 38, 2833. (赵康, 杨磊, 刘建华, 夏春谷, 有机化学, 2018, 38, 2833.) (p) Wang, S.; Yan, F.; Wang, L.; Zhu, L. Chin. J. Org. Chem. 2018, 38, 291. (汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.) (q) Xu, L.; Xu, H.; Lin, H.; Dai, H. Chin. J. Org. Chem. 2018, 38, 1940. (徐琳琳, 徐辉, 林海霞, 戴辉雄, 有机化学, 2018, 38, 1940) (r) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192. (s) Zhang, S.; Liao, G.; Shi, B. Chin. J. Org. Chem. 2019, 39, 1522. (张硕, 廖港, 史炳锋, 有机化学, 2019, 39, 1522). (t) Wu, M.; Huang, X.; Zhang, H.; Li, P. Chin. J. Org. Chem. 2019, 39, 3114. (吴梅, 黄新平, 张海兵, 李鹏飞, 有机化学, 2019, 39, 3114). (u) Zhan, B.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39, 3602. (占贝贝, 史炳锋, 有机化学, 2019, 39, 3602. [2] (a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. (b) Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig G.; Schaaf, P.; Wiesinger, T.; Farooq Zia, M.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603. (c) Zhang, Q.; Shi, B.-F. Chin. J. Chem. 2019, 37, 647. (d) Rej, S.; Ano, Y.; Chatani, N. Chem. Rev. 2020, 120, 1788. [3] Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252. [4] For reviews and representative examples, see:(a) Gong, L.-Z. Acta Chim. Sinica 2018, 76, 817. (龚流柱, 化学学报, Acta Chim. Sinica 2018, 76, 817.) (b) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Chem. Rev. 2017, 117, 8977. (c) Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199. (d) John-Campbell, S. S.; Bull, J. A. Org. Biomol. Chem. 2018, 16, 4582. (e) Bhattacharya, T.; Pimparkar, S.; Maiti, D. RSC Adv. 2018, 8, 19456. (f) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433. (g) Sun, H.; Guimond, N.; Huang, Y. Org. Biomol. Chem. 2016, 14, 8389. (h) Xu, Y.; Su, T.; Huang, Z.; Dong, G. Angew. Chem., Int. Ed. 2016, 55, 2559. (i) Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi, B.-F. Angew. Chem., Int. Ed. 2017, 56, 6617. (j) Liu, Y.; Ge, H.; Liu, X.-H.; Park, H.; Hu, J.-H.; Hu, Y.; Zhang, Q.-L.; Wang, B.-L.; Sun, B.; Yeung, K.; Zhang, F.-L.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 888. (k) Chen, X. Y.; Ozturk, S.; Sorensen, E. J. Org. Lett. 2017, 19, 1140. (l) Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 3661. (m) Liao, G.; Li, B.; Chen, H.-M.; Yao, Q.-J.; Xia, Y.-N.; Luo, J.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 17151. (n) Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. ACS Catal. 2019, 9, 1956. (o) Song, H.; Li, Y.; Yao, Q.-J.; Jin, L.; Liu, L.; Liu, Y.-H.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, DOI:10.1002/anie.201915949. (p) Wu, Y.-J.; Yao, Q.-J.; Chen, H.-M.; Liao, G.; Shi, B.-F. Sci. China, Chem. 2020, DOI:10.1007/s11426-020-9694-3. [5] Davis, H. J.; Phipps, R. J. Chem. Sci. 2017, 8, 864. [6] (a) For selected reviews on noncovalent interactions, see:Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Nature 2017, 543, 637. (b) Müller-Dethlefs, K.; Hobza, P. Chem Rev. 2000, 100, 143. (c) Breugst, M.; von der Heiden, D.; Schmauck, J. Synthesis 2017, 49, 3224. (d) Hobza P, Müller-Dethlefs K. Non-Covalent Interactions, The Royal Society of Chemistry, Cambridge, 2009. (e) Scheiner, S. Noncovalent Forces, Heidelberg, Springer, 2015; (f) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. (g) Doyle, A. G.; Jacobsen, E. N. Chem Rev. 2007, 107, 5713; [7] (a) You, C.-C.; Zhang, M.; Liu, Y. Acta Chim. Sinica 2000, 58, 338. (尤长城, 张旻, 刘育, 化学学报, 2000, 58, 338.) (b) Xu, J.; Wang, Z.; Zhang, X. Acta Chim. Sinica 2016, 74, 467. (徐俊, 王治强, 张希, 化学学报, 2016, 74, 467.) (c) Zhu, J.; Lü, J.-G.; Zhou, Y.-J.; Li, Y.-W.; Chen, J.; Zhen, C.-H. Acta Chim. Sinica 2007, 65, 37. (朱驹, 吕加国, 周有骏, 李耀武, 陈军, 郑灿辉, 化学学报, 2007, 65, 37.) (d) Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney, A. C. Acc. Chem. Res. 2016, 49, 1061. (e) Persch, E.; Dumele, O.; Diederich, F. Angew. Chem., Int. Ed. 2015, 54, 3290. (f) Jiang, H.; Li, Q.; Wang, G. Chin. J. Org. Chem. 2018, 38, 1065. (江华, 李巧连, 王光霞, 有机化学, 2018, 38, 1065.) (g) Jiao, Y.; Zhang, X. Acta Chim. Sinica 2018, 76, 659. (焦阳, 张希, 化学学报, 2018, 76, 659.) (h) Liu, C.-Z.; Wang, H.; Zhang, D.-W.; Zhao, X.; Li, Z.-T. Chin. J. Org. Chem. 2019, 39, 28. (刘传志, 王辉, 张丹维, 赵新, 黎占亭, 有机化学, 2019, 39, 28.) [8] Roosen, P. C.; Kallepalli, V. A.; Chattopadhyay, B.; Singleton, D. A.; Maleczka, R. E.; Smith, M. R. J. Am. Chem. Soc. 2012, 134, 11350. [9] Preshlock, S. M.; Plattner, D. L.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E.; Smith, M. R. Angew. Chem., Int. Ed. 2013, 52, 12915. [10] Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. Nat. Chem. 2015, 7, 712. [11] Wang, J.; Torigoe, T.; Kuninobu, Y. Org. Lett. 2019, 21, 1342. [12] Lu, X.; Yoshigoe, Y.; Ida, H.; Nishi, M.; Kanai, M.; Kuninobu, Y. ACS Catal. 2019, 9, 1705. [13] Unnikrishnan, A.; Sunoj, R. B. Chem. Sci. 2019, 10, 3826. [14] Davis, H. J.; Genov, G. R.; Phipps, R. J. Angew. Chem., Int. Ed. 2017, 56, 13351. [15] Davis, H. J.; Mihai, M. T.; Phipps, R. J. J. Am. Chem. Soc. 2016, 138, 12759. [16] Bai, S.-T.; Bheeter, C. B.; Reek, J. N. H. Angew. Chem., Int. Ed. 2019, 58, 13039. [17] Mihai, M. T.; Davis, H. J.; Genov, G. R.; Phipps, R. J. ACS Catal. 2018, 8, 3764. [18] Lee, B.; Mihai, M. T.; Stojalnikova, V.; Phipps, R. J. J. Org. Chem. 2019, 84, 13124. [19] (a) Mihai, M.; Williams, B. D.; Phipps, R. J. J. Am. Chem. Soc. 2019, 141, 15477. (b) Montero Bastidas, J. R.; Oleskey, T. J.; Miller, S. L.; Smith, M. R.; Maleczka, R. E. J. Am. Chem. Soc. 2019, 141, 15483. [20] Bisht, R.; Chattopadhyay, B. J. Am. Chem. Soc. 2016, 138, 84. [21] Li, H. L.; Kuninobu, Y.; Kanai, M. Angew. Chem., Int. Ed. 2017, 56, 1495. [22] Yang, L.; Semba, K.; Nakao, Y. Angew. Chem., Int. Ed. 2017, 56, 4853. [23] Yang, L.; Uemura, N.; Nakao, Y. J. Am. Chem. Soc. 2019, 141, 7972. [24] Hoque, M. E.; Bisht, R.; Haldar, C.; Chattopadhyay, B. J. Am. Chem. Soc. 2017, 139, 7745. [25] Bisht, R.; Hoque, M. E.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2018, 57, 15762. [26] Chattopadhyay, B.; Dannatt, J. E.; Andujar-De Sanctis, I. L.; Gore, K. A.; Maleczka, R. E.; Singleton, D. A.; Smith, M. R. J. Am. Chem. Soc. 2017, 139, 7864. [27] Zhang, Z.; Tanaka, K.; Yu, J.-Q. Nature 2017, 543, 538. [28] (a) Achar, T. K.; Ramakrishna, K.; Porey, S.; Pal, T.; Dolui, P.; Biswas, J. P.; Maiti, D. Chem.-Eur. J. 2018, 24, 17906. (b) Ramakrishna, K.; Biswas, J. P.; Jana, S.; Achar, T. K.; Porey, S.; Maiti, D. Angew. Chem., Int. Ed. 2019, 58, 13808. [29] Haldar, C.; Hoque, M. E.; Bisht, R.; Chattopadhyay, B. Tetrahedron Lett. 2018, 59, 1269. [30] (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (b) Wencel-Delord, J.; Colobert, F. Chem.-Eur. J. 2013, 19, 14010. (c) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173. (d) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2017, 50, 351. (e) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908. (f) Yan, S.-Y.; Han, Y.-Q.; Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 9093. (g) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Science 2018, 359, 759. (h) Liao, G.; Zhou, T.; Yao, Q.-J.; Shi, B.-F. Chem. Commun. 2019, 55, 8514. (i) Han, Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558. (j) Luo, J.; Zhang, T.; Wang, L.; Liao, G.; Yao, Q.-J.; Wu, Y.-J.; Zhan, B.-B.; Lan, Y.; Lin, X.-F.; Shi, B.-F. Angew. Chem., Int. Ed. 2019, 58, 6708. (k) Zhan, B.-B.; Wang, L.; Luo, J.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 3568. (l) Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Chin. J. Chem. 2020, 38, 242. |
[1] | 李雅宁, 王晓艳, 唐勇. 自由基聚合的立体选择性调控★[J]. 化学学报, 2024, 82(2): 213-225. |
[2] | 王成强, 冯超. 亲核性氟源在碳碳不饱和键选择性氟化官能化反应中的应用[J]. 化学学报, 2024, 82(2): 160-170. |
[3] | 黄涎廷, 韩洪亮, 肖婧, 王帆, 柳忠全. I2O5/KSCN介导的炔烃碘硫氰化反应[J]. 化学学报, 2024, 82(1): 5-8. |
[4] | 吴宇晗, 张栋栋, 尹宏宇, 陈正男, 赵文, 匙玉华. “双碳”目标下Janus In2S2X光催化还原CO2的密度泛函理论研究[J]. 化学学报, 2023, 81(9): 1148-1156. |
[5] | 杨蓉婕, 周璘, 苏彬. 基于共价有机框架修饰电极的维生素A和C的选择性检测★[J]. 化学学报, 2023, 81(8): 920-927. |
[6] | 张艳东, 朱守非. 环丙烷骨架膦配体的研究展望★[J]. 化学学报, 2023, 81(7): 777-783. |
[7] | 坎比努尔•努尔买买提, 王超, 罗时玮, 阿布都热西提•阿布力克木. 电化学条件下α,α,α-三卤(氯, 溴)甲基酮类化合物的选择性脱卤反应研究[J]. 化学学报, 2023, 81(6): 582-587. |
[8] | 刘露杰, 张建, 王亮, 肖丰收. 生物质基多元醇的多相催化选择性氢解★[J]. 化学学报, 2023, 81(5): 533-547. |
[9] | 徐斌, 韦秀芝, 孙江敏, 刘建国, 马隆龙. 原位合成氮掺杂石墨烯负载钯纳米颗粒用于催化香兰素高选择性加氢反应[J]. 化学学报, 2023, 81(3): 239-245. |
[10] | 黄秀清, 张琦. 葫芦状有机金属配位笼的合成及其对两种药物分子的选择性结合[J]. 化学学报, 2023, 81(3): 217-221. |
[11] | 韩叶强, 史炳锋. 钯(II)催化不对称C(sp3)—H键官能团化研究进展★[J]. 化学学报, 2023, 81(11): 1522-1540. |
[12] | 田小茂, 林悦群, 朱菡, 黄超, 朱必学. 手性单Schiff碱大环对青霉胺对映体识别研究[J]. 化学学报, 2023, 81(1): 20-28. |
[13] | 王振华, 马聪, 方萍, 徐海超, 梅天胜. 有机电化学合成的研究进展[J]. 化学学报, 2022, 80(8): 1115-1134. |
[14] | 吕天天, 马文, 詹冬笋, 邹燕敏, 李继龙, 冯美玲, 黄小荥. 两例新的镧系金属-有机框架化合物高效去除Cs+离子研究※[J]. 化学学报, 2022, 80(5): 640-646. |
[15] | 罗俊, 贾礼超, 颜冬, 李箭. Ni基乙烷脱氢催化剂的性能及其改进[J]. 化学学报, 2022, 80(3): 317-326. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||