化学学报 ›› 2024, Vol. 82 ›› Issue (2): 213-225.DOI: 10.6023/A23100445 上一篇    下一篇

所属专题: 庆祝《化学学报》创刊90周年合辑

综述

自由基聚合的立体选择性调控

李雅宁a,b, 王晓艳a,*(), 唐勇a   

  1. a 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
    b 上海科技大学 物质科学与技术学院 上海 201210
  • 投稿日期:2023-10-10 发布日期:2024-01-04
  • 作者简介:

    李雅宁, 上海科技大学/中国科学院上海有机化学研究所2019级联合培养博士. 2019年本科毕业于河南大学. 目前研究方向为光诱导的可控自由基聚合.

    王晓艳, 中国科学院上海有机化学研究所副研究员. 2010年本科毕业于东北林业大学. 2015年在中国科学院长春应用化学研究所取得博士学位. 随后在中国科学院上海有机化学研究所金属有机化学实验室/南开大学化学系进行博士后的研究工作. 2017年正式加入上海有机所金属有机化学国家重点实验室, 开展新型过渡金属催化剂、可控自由基聚合及可控烯烃配位聚合等方面的研究.

    唐勇, 中国科学院上海有机化学研究所研究员. 1986年本科毕业于四川师范大学; 1992年和1996年先后在中国科学院上海有机化学研究所获得硕士和博士学位. 1996年至1999年先后在美国科罗拉多州立大学和美国乔治城大学从事博士后研究; 1999年5月入职上海有机化学研究所, 2000年1月, 担任上海有机化学研究所“百人计划”项目研究员, 2015年当选中国科学院院士. 主要从事金属有机化学和高分子化学研究, 包括: 不对称催化、烯烃聚合催化剂的设计、合成与应用、叶立德化学以及天然产物全合成等.

    庆祝《化学学报》创刊90周年.
  • 基金资助:
    中国科学院青年创新促进会(2020259); 国家自然科学基金(22271304); 上海市启明星计划(21QA1411200); 上海市自然科学基金(23ZR1476300)

The Regulation of Stereoselectivity in Radical Polymerization

Yaning Lia,b, Xiaoyan Wanga(), Yong Tanga   

  1. a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    b School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210
  • Received:2023-10-10 Published:2024-01-04
  • Contact: E-mail: wangxiaoyan@sioc.ac.cn
  • About author:
    Dedicated to the 90th anniversary of Acta Chimica Sinica.
  • Supported by:
    Youth Innovation Promotion Association CAS(2020259); National Natural Science Foundation of China(22271304); Shanghai Rising-Star Program(21QA1411200); Shanghai Natural Science Foundation(23ZR1476300)

聚合物的物理和化学性能取决于其结构. 从组成聚合物的重复单元结构及比例到更为精细、复杂的聚合物微结构, 如聚合物的分子量及其分布、单体的序列排布(嵌段、梯度、接枝、交替等)、拓扑结构(星型、梳状、网状、刷状等)、末端官能团、立构规整度等都可能显著影响聚合物的性能, 人们对此进行了广泛而深入的研究. 其中, 聚合物的立构规整度的调控具有重要意义, 如丙烯的立体定向性配位聚合显示了巨大的商业价值. 虽然自由基聚合是高分子材料生产中应用最广泛的聚合技术之一, 但其难以对大分子结构进行控制. 可逆失活自由基聚合(RDRP)的发展使分子量的控制得到了显著改善. 然而, 对于所有形式的自由基聚合来说, 立体选择性的调控都极具挑战性. 这主要是由于自由基的高活性以及近平面特性, 使得单体加成时难以控制面的选择性, 生成的聚合物多为无规立构. 本综述从调控策略的角度对自由基聚合的立体选择性调控的相关研究进行了总结、评价和展望, 包括在限定环境中聚合、使用含手性辅基或大位阻取代基的单体、溶剂(氢键)效应、外加路易斯酸以及催化剂(或配体)效应等五个方面. 尽管这些调控手段已经获得了立体选择性自由基聚合的初步进展, 但总体而言仍然存在着单体范围受限、反应体系复杂、溶剂成本高、路易斯酸添加量大、催化效率低以及调控作用不明显等问题. 利用可控自由基聚合催化剂来调控立体选择性是极具潜力的, 未来可借鉴小分子的自由基不对称催化研究的经验来精心设计催化剂的结构并优化反应条件, 以此来拉近催化中心和聚合物链末端自由基的距离, 营造一种限域空间环境, 增强催化剂的结构对自由基加成聚合过程中的立体化学影响.

关键词: 自由基聚合, 立体选择性, 机理, 立构规整性聚合物, 催化剂

The physical and chemical properties of polymer strongly depend on the structures of the polymer chain. The structure studies range from the structure of repeat units and their mole fractions to more detailed microstructures, such as molecular weight and its distribution, the sequence of monomer units (block, gradient, alternating, graft, etc.), topology (stars, combs, networks, brushes, etc.), the end-functionalities and tacticity. Among them, the regulation of the polymer tacticity is greatly significant. For example, the stereospecific coordination polymerization of propylene has shown great commercial value. The control of macromolecular structure is difficult for free radical polymerization, although it is one of the most widely used polymerization techniques in the production of polymer materials. The development of reversible deactivated radical polymerization (RDRP) has significantly improved the control over the molecular weight of polymer. However, the regulation of stereoselectivity is extremely challenging for all forms of radical polymerization. One of the reasons is because a terminal carbon of propagating radical takes essentially a neutral sp2 planar-like structure without counter species in contrast to an anionic sp3 pyramidal or cationic sp2 planar-like structure with counter ion or chiral catalyst site. This brings about a non-stereospecific radical propagation, and results in the energy difference between two enantiomers of an active radical species is small and the energy barrier between the enantiomers is low compared to the thermal energy at the polymerization temperature. In this review, the regulation of stereoselectivity in free radical polymerization are comprehensively summarized, evaluated, and prospected from the perspective of regulation strategies, including polymerization in restricted environment, using monomer containing chiral or bulky substituents, solvent (hydrogen bond) effect, the addition of Lewis acid and catalyst or ligand effect. Although these strategies have achieved some preliminary progress, there are still some problems in general, such as limited monomer scope, high solvent cost, complex reaction system, high Lewis acid loading, low catalytic efficiency and insignificant regulatory effect. The use of controlled radical polymerization catalysts to regulate stereoselectivity is of great potential. In the future, the studies on the radical asymmetric catalysis of small molecule can be used for reference to carefully design the structure of the catalyst and optimize the reaction conditions. In this way, the distance between the catalytic center and the terminal radical of the polymer chain is narrowed, and a confined space environment is created to enhance the stereochemical influence of the catalyst structure on the radical addition polymerization process.

Key words: radical polymerization, stereoselectivity, mechanism, tactic polymer, catalyst