化学学报 ›› 2022, Vol. 80 ›› Issue (5): 614-624.DOI: 10.6023/A22010031 上一篇 下一篇
研究论文
王诗慧, 薛小雨, 程敏, 陈少臣, 刘冲, 周利, 毕可鑫, 吉旭*()
投稿日期:
2022-01-16
发布日期:
2022-05-31
通讯作者:
吉旭
基金资助:
Shihui Wang, Xiaoyu Xue, Min Cheng, Shaochen Chen, Chong Liu, Li Zhou, Kexin Bi, Xu Ji()
Received:
2022-01-16
Published:
2022-05-31
Contact:
Xu Ji
Supported by:
文章分享
在减少CO2排放、实现碳中和的背景下, 金属有机框架(MOFs)在清洁能源领域展现出广阔应用前景. 提出一种机器学习和分子模拟协同的分层筛选策略, 快速、准确地从134185个假设MOFs中识别出具有最佳CH4/H2分离性能的吸附剂. 首先, 根据MOFs的结构性质, 筛掉孔径或体积比表面积不恰当的吸附剂, 初筛后MOFs的数量减至62278个. 接下来, 抽取10% MOFs将结构和化学混合描述符作为特征, 利用随机森林分别构建变压吸附和真空变压吸附过程中其对CH4的吸附剂性能得分(APS)预测模型. 相比于其他模型构建策略, 基于本策略构建的模型具有最优预测准确性, 可用于余下MOFs的性能预测. 随后根据APS预测值排序, 筛选出Top 1000的MOFs并利用分子模拟修正预测结果, 进一步确定了10个最佳MOFs. 最后, 对描述符的重要性进行解释, 揭示了实现模型在不同操作场景下的迁移具有潜力, 为未来开发适用于多操作场景下的高性能MOFs筛选方法提供了一条高效的研究路径和方法.
王诗慧, 薛小雨, 程敏, 陈少臣, 刘冲, 周利, 毕可鑫, 吉旭. 机器学习与分子模拟协同的CH4/H2分离金属有机框架高通量计算筛选[J]. 化学学报, 2022, 80(5): 614-624.
Shihui Wang, Xiaoyu Xue, Min Cheng, Shaochen Chen, Chong Liu, Li Zhou, Kexin Bi, Xu Ji. High-Throughput Computational Screening of Metal-Organic Frameworks for CH4/H2 Separation by Synergizing Machine Learning and Molecular Simulation[J]. Acta Chimica Sinica, 2022, 80(5): 614-624.
Category | Descriptor | Unit |
---|---|---|
Structural Descriptor | largest cavity diameter (LCD) | nm |
pore limiting diameter (PLD) | nm | |
gravimetric surface area (GSA) | m2/g | |
volumetric surface area (VSA) | m2/cm3 | |
crystal density (Density) | g/cm3 | |
helium void fraction (HVF) | — | |
Chemical Descriptor | no. of H atoms (Num H) | — |
no. of C atoms (Num C) | — | |
no. of N atoms (Num N) | — | |
no. of O atoms (Num O) | — | |
total degree of unsaturation (TDU) | [(no. of C atoms×2) + 2- no. of H atoms]/2 | |
metallic percentage (MP) | (no. of metal atoms/ no. of C atoms)×100 | |
electronegative to total ratio (ET ratio) | (no. of electronegative atoms)/ (no. of atoms) | |
weighted electronegativity per atom (WEA) | (sum of weighted a electronegative atoms)/ (no. of atoms) | |
Henry’s coefficient of methane (HC methane) | mol•kg–1•Pa–1 | |
Henry’s coefficient of hydrogen (HC hydrogen) | mol•kg–1•Pa–1 |
Category | Descriptor | Unit |
---|---|---|
Structural Descriptor | largest cavity diameter (LCD) | nm |
pore limiting diameter (PLD) | nm | |
gravimetric surface area (GSA) | m2/g | |
volumetric surface area (VSA) | m2/cm3 | |
crystal density (Density) | g/cm3 | |
helium void fraction (HVF) | — | |
Chemical Descriptor | no. of H atoms (Num H) | — |
no. of C atoms (Num C) | — | |
no. of N atoms (Num N) | — | |
no. of O atoms (Num O) | — | |
total degree of unsaturation (TDU) | [(no. of C atoms×2) + 2- no. of H atoms]/2 | |
metallic percentage (MP) | (no. of metal atoms/ no. of C atoms)×100 | |
electronegative to total ratio (ET ratio) | (no. of electronegative atoms)/ (no. of atoms) | |
weighted electronegativity per atom (WEA) | (sum of weighted a electronegative atoms)/ (no. of atoms) | |
Henry’s coefficient of methane (HC methane) | mol•kg–1•Pa–1 | |
Henry’s coefficient of hydrogen (HC hydrogen) | mol•kg–1•Pa–1 |
VSA | PSA | ||||||
---|---|---|---|---|---|---|---|
Combinationa | Validation set R2 | Test set R2 | Test set RMSE | Validation set R2 | Test set R2 | Test set RMSE | |
RF+CD | 0.879 | 0.910 | 16.658 | 0.814 | 0.842 | 25.481 | |
RF+SD | 0.423 | 0.441 | 57.967 | 0.498 | 0.527 | 48.229 | |
RF+SC | 0.935 | 0.937 | 13.386 | 0.896 | 0.907 | 20.345 | |
RF+SC (未初筛) | 0.833 | 0.707 | 46.124 | 0.868 | 0.869 | 22.041 | |
SVM+SC | 0.816 | 0.802 | 28.446 | 0.827 | 0.808 | 29.383 | |
KNN+SC | 0.721 | 0.759 | 31.306 | 0.754 | 0.759 | 32.907 | |
DT+SC | 0.891 | 0.929 | 16.946 | 0.808 | 0.834 | 27.297 | |
ANN+SC | 0.816 | 0.819 | 25.225 | 0.880 | 0.823 | 28.207 |
VSA | PSA | ||||||
---|---|---|---|---|---|---|---|
Combinationa | Validation set R2 | Test set R2 | Test set RMSE | Validation set R2 | Test set R2 | Test set RMSE | |
RF+CD | 0.879 | 0.910 | 16.658 | 0.814 | 0.842 | 25.481 | |
RF+SD | 0.423 | 0.441 | 57.967 | 0.498 | 0.527 | 48.229 | |
RF+SC | 0.935 | 0.937 | 13.386 | 0.896 | 0.907 | 20.345 | |
RF+SC (未初筛) | 0.833 | 0.707 | 46.124 | 0.868 | 0.869 | 22.041 | |
SVM+SC | 0.816 | 0.802 | 28.446 | 0.827 | 0.808 | 29.383 | |
KNN+SC | 0.721 | 0.759 | 31.306 | 0.754 | 0.759 | 32.907 | |
DT+SC | 0.891 | 0.929 | 16.946 | 0.808 | 0.834 | 27.297 | |
ANN+SC | 0.816 | 0.819 | 25.225 | 0.880 | 0.823 | 28.207 |
VSA | PSA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MOF ID | SCH4/H2 | ΔNCH4/(mol•kg–1) | APS/(mol•kg–1) | R% | MOF ID | SCH4/H2 | ΔNCH4/(mol•kg–1) | APS/(mol•kg–1) | R% | |
hMOF-5073958 | 194.7 | 3.49 | 679.3 | 81.87 | hMOF-5074069 | 47.5 | 6.65 | 315.8 | 80.25 | |
hMOF-5079271 | 187.0 | 3.60 | 673.9 | 82.45 | hMOF-27591 | 43.8 | 6.96 | 305.0 | 80.85 | |
hMOF-36375 | 203.0 | 3.28 | 666.6 | 82.06 | hMOF-27683 | 40.9 | 7.38 | 301.5 | 82.05 | |
hMOF-5055186 | 172.2 | 3.80 | 654.3 | 81.62 | hMOF-5056488 | 40.9 | 7.23 | 295.7 | 81.01 | |
hMOF-26377 | 210.8 | 3.07 | 647.7 | 80.25 | hMOF-5071338 | 44.0 | 6.69 | 294.9 | 80.58 | |
hMOF-5073994 | 197.4 | 3.23 | 637.8 | 82.59 | hMOF-5046827 | 44.6 | 6.60 | 294.1 | 81.11 | |
hMOF-25357 | 214.9 | 2.94 | 630.8 | 82.00 | hMOF-29743 | 40.3 | 7.09 | 285.5 | 82.45 | |
hMOF-5056768 | 164.9 | 3.71 | 611.0 | 81.51 | hMOF-5071184 | 46.7 | 6.00 | 280.3 | 80.11 | |
hMOF-5081782 | 179.1 | 3.37 | 604.6 | 83.54 | hMOF-32836 | 36.1 | 7.61 | 274.9 | 83.83 | |
hMOF-26209 | 212.0 | 2.83 | 599.8 | 81.82 | hMOF-29330 | 42.6 | 6.31 | 268.4 | 80.01 |
VSA | PSA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MOF ID | SCH4/H2 | ΔNCH4/(mol•kg–1) | APS/(mol•kg–1) | R% | MOF ID | SCH4/H2 | ΔNCH4/(mol•kg–1) | APS/(mol•kg–1) | R% | |
hMOF-5073958 | 194.7 | 3.49 | 679.3 | 81.87 | hMOF-5074069 | 47.5 | 6.65 | 315.8 | 80.25 | |
hMOF-5079271 | 187.0 | 3.60 | 673.9 | 82.45 | hMOF-27591 | 43.8 | 6.96 | 305.0 | 80.85 | |
hMOF-36375 | 203.0 | 3.28 | 666.6 | 82.06 | hMOF-27683 | 40.9 | 7.38 | 301.5 | 82.05 | |
hMOF-5055186 | 172.2 | 3.80 | 654.3 | 81.62 | hMOF-5056488 | 40.9 | 7.23 | 295.7 | 81.01 | |
hMOF-26377 | 210.8 | 3.07 | 647.7 | 80.25 | hMOF-5071338 | 44.0 | 6.69 | 294.9 | 80.58 | |
hMOF-5073994 | 197.4 | 3.23 | 637.8 | 82.59 | hMOF-5046827 | 44.6 | 6.60 | 294.1 | 81.11 | |
hMOF-25357 | 214.9 | 2.94 | 630.8 | 82.00 | hMOF-29743 | 40.3 | 7.09 | 285.5 | 82.45 | |
hMOF-5056768 | 164.9 | 3.71 | 611.0 | 81.51 | hMOF-5071184 | 46.7 | 6.00 | 280.3 | 80.11 | |
hMOF-5081782 | 179.1 | 3.37 | 604.6 | 83.54 | hMOF-32836 | 36.1 | 7.61 | 274.9 | 83.83 | |
hMOF-26209 | 212.0 | 2.83 | 599.8 | 81.82 | hMOF-29330 | 42.6 | 6.31 | 268.4 | 80.01 |
[1] |
Chen, W. D. China Petrochem. Ind. Obser. 2021, 8, 60. (in Chinese)
|
(陈卫东, 中国石油和化工产业观察, 2021, 8, 60.)
|
|
[2] |
Cao, F.; Chen, K. Y.; Guo, T. T.; Jin, X. L.; Wang, H. G.; Zhang, L. Distributed Energy 2020, 5, 1. (in Chinese)
|
(曹蕃, 陈坤洋, 郭婷婷, 金绪良, 王海刚, 张丽, 分布式能源, 2020, 5, 1.)
|
|
[3] |
Malek, A.; Farooq, S. AIChE J. 1998, 44, 1985.
doi: 10.1002/aic.690440906 |
[4] |
Herm, Z. R.; Krishna, R.; Long, J. Microporous Mesoporous Mater. 2012, 151, 481.
doi: 10.1016/j.micromeso.2011.09.004 |
[5] |
Ludwig, K. Development of New Pressure Swing Adsorption (PSA) Technology to Recover High Valued Products from Chemical Plant and Refinery Waste Systems, Report to DOE, DE-FC36-00CH11022, Pennsylvania, Air Products and Chemicals Inc., 2004.
|
[6] |
Krishna, R.; Baten, J. Phys. Chem. Chem. Phys. 2011, 13, 10593.
doi: 10.1039/c1cp20282k |
[7] |
Basdogan, Y.; Sezginel, K. B.; Keskin, S. Ind. Eng. Chem. Res. 2015, 54, 8479.
doi: 10.1021/acs.iecr.5b01901 |
[8] |
Yang, Q.; Zhong, C. J. Phys. Chem. B 2006, 110, 17776.
doi: 10.1021/jp062723w |
[9] |
Liu, B.; Yang, Q.; Xue, C.; Zhong, C.; Chen, B.; Smit, B. J. Phys. Chem. C 2008, 112, 9854.
doi: 10.1021/jp802343n |
[10] |
Bei, L.; Sun, C.; Chen, G. Chem. Eng. Sci. 2011, 66, 3012.
doi: 10.1016/j.ces.2011.04.004 |
[11] |
Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Angew. Chem., nt. Ed. 2010, 122, 5078.
|
[12] |
Huang, A.; Dou, W.; Caro, J. J. Am. Chem. Soc. 2010, 132, 15562.
doi: 10.1021/ja108774v |
[13] |
Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. J. Membr. Sci. 2010, 354, 48.
doi: 10.1016/j.memsci.2010.02.074 |
[14] |
Li, Y.-S.; Liang, F.-Y.; Bux, H.; Feldhoff, A.; Yang, W.-S.; Caro, J. Angew. Chem., Int. Ed. 2010, 122, 558.
|
[15] |
Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. J. Am. Chem. Soc. 2009, 131, 16000.
doi: 10.1021/ja907359t |
[16] |
Wu, X. J.; Yang, X.; Song, J.; Cai, W. Q. Acta Chim. Sinica 2012, 70, 2518. (in Chinese)
doi: 10.6023/A12110858 |
(吴选军, 杨旭, 宋杰, 蔡卫权, 化学学报, 2012, 70, 2518.)
doi: 10.6023/A12110858 |
|
[17] |
Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Fairen-Jimenez, D. Chem. Mater. 2017, 29, 2618.
doi: 10.1021/acs.chemmater.7b00441 |
[18] |
Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.
doi: 10.1038/nchem.1192 |
[19] |
Gómez-Gualdrón, D. A.; Colón, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y. S.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Zhang, J.; Snurr, R. Q. Energy Environ. Sci. 2016, 9, 3279.
doi: 10.1039/C6EE02104B |
[20] |
Moosavi, S. M.; Boyd, P. G.; Sarkisov, L.; Smit, B. ACS Cent. Sci. 2018, 4, 832.
doi: 10.1021/acscentsci.8b00157 |
[21] |
Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. J. Phys. Chem. Lett. 2017, 8, 6135.
doi: 10.1021/acs.jpclett.7b02700 |
[22] |
Zhang, H.; Yang, L. M.; Ganz, E. ACS Appl. Mater. Interfaces 2020, 12, 18533.
doi: 10.1021/acsami.0c01927 |
[23] |
Zhang, H.; Yang, L. M.; Ganz, E. ACS Sustainable Chem. Eng. 2020, 8, 14616.
doi: 10.1021/acssuschemeng.0c05951 |
[24] |
Zhang, H.; Shang, C.; Yang, L. M.; Ganz, E. Inorg. Chem. 2020, 59, 16665.
doi: 10.1021/acs.inorgchem.0c02654 pmid: 33124798 |
[25] |
Zhang, H.; Yang, L. M.; Pan, H.; Ganz, E. Cryst. Growth Des. 2020, 20, 6337.
doi: 10.1021/acs.cgd.0c00269 |
[26] |
Yang, L.; Wu, Y. J.; Wu, X. J.; Cai, W. Acta Chim. Sinica 2021, 79, 520. (in Chinese)
doi: 10.6023/A20110526 |
(杨磊, 吴宇静, 吴选军, 蔡卫权, 化学学报, 2021, 79, 520.)
doi: 10.6023/A20110526 |
|
[27] |
Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303. (in Chinese)
doi: 10.6023/A18010026 |
(卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)
doi: 10.6023/A18010026 |
|
[28] |
Yang, W. Y.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2018, 76, 785. (in Chinese)
doi: 10.6023/A18070293 |
(杨文远, 梁红, 乔智威, 化学学报, 2018, 76, 785.)
doi: 10.6023/A18070293 |
|
[29] |
Wu, D.; Wang, C.; Liu, B.; Liu, D.; Yang, Q.; Zhong, C. AIChE J. 2012, 58, 2078.
doi: 10.1002/aic.12744 |
[30] |
Altintas, C.; Erucar, I.; Keskin, S. ACS Appl. Mater. Interfaces 2018, 10, 3668.
doi: 10.1021/acsami.7b18037 |
[31] |
Chiau Junior, M. J.; Wang, Y.; Wu, X.; Cai, W. Q. Int. J. Hydrogen Energy 2020, 45, 27320.
doi: 10.1016/j.ijhydene.2020.07.041 |
[32] |
Guo, F. Y.; Liu, Y.; Hu, J.; Liu, H. L.; Hu, Y. Chem. Eng. Sci. 2016, 149, 14.
doi: 10.1016/j.ces.2016.04.027 |
[33] |
Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Acta Chim. Sinica 2019, 77, 323. (in Chinese)
doi: 10.6023/A18120497 |
(刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
doi: 10.6023/A18120497 |
|
[34] |
Liang, H.; Jiang, K.; Yan, T. A.; Chen, G. H. ACS Omega 2021, 6, 9066.
doi: 10.1021/acsomega.1c00100 pmid: 33842776 |
[35] |
Liang, H.; Yang, W. Y.; Peng, F.; Liu, Z. L.; Liu, J.; Qiao, Z. W. APL Mater. 2019, 7, 091101.
doi: 10.1063/1.5100765 |
[36] |
Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Mater. Chem. A 2018, 6, 18898.
doi: 10.1039/C8TA04939D |
[37] |
Chung, Y. G.; Gomez-Gualdron, D. A.; Li, P.; Leperi, K. T.; Deria, P.; Zhang, H.; Vermeulen, N. A.; Stoddart, J. F.; You, F.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Sci. Adv. 2016, 2, e1600909.
|
[38] |
Tang, H. J.; Xu, Q. S.; Wang, M.; Jiang, J. W. ACS Appl. Mater. Interfaces 2021, 13, 53454.
doi: 10.1021/acsami.1c13786 |
[39] |
Cai, C. Z.; Li, L. F.; Deng, X. M.; Li, S. H.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2020, 78, 427. (in Chinese)
doi: 10.6023/A20030065 |
(蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78, 427.)
doi: 10.6023/A20030065 |
|
[40] |
Moghadam, P. Z.; Rogge, S. M. J.; Li, A.; Chow, C. M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez-Gualdron, D. A.; Van Speybroeck, V.; Fairen-Jimenez, D. Matter 2019, 1, 219.
doi: 10.1016/j.matt.2019.03.002 |
[41] |
Long, R.; Xia, X. X.; Zhao, Y. A.; Li, S.; Liu, Z. C.; Liu, W. iScience 2021, 24, 101914.
doi: 10.1016/j.isci.2020.101914 |
[42] |
Batra, R.; Chen, C.; Evans, T. G.; Walton, K. S.; Ramprasad, R. Nat. Mach. Intell. 2020, 2, 704.
doi: 10.1038/s42256-020-00249-z |
[43] |
Tong, M.; Lan, Y. S.; Yang, Q. Y.; Zhong, C. L. Green Energy Environ. 2018, 3, 107.
doi: 10.1016/j.gee.2017.09.004 |
[44] |
Sheridan, R. P. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 8165.
|
[45] |
Cramer, R. D.; Poss, M. A.; Hermsmeier, M. A.; Caulfield, T. J.; Kowala, M. C.; Valentine, M. T. J. Med. Chem. 1999, 42, 3919.
pmid: 10508440 |
[46] |
Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.
doi: 10.1016/j.micromeso.2011.08.020 |
[47] |
Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. Mol. Simul. 2015, 42, 81.
doi: 10.1080/08927022.2015.1010082 |
[48] |
Halder, P.; Singh, J. K. Energy Fuels 2020, 34, 14591.
doi: 10.1021/acs.energyfuels.0c03063 |
[49] |
Wu, Y.; Duan, H.; Xi, H. Chem. Mater. 2020, 32, 2986.
doi: 10.1021/acs.chemmater.9b05322 |
[50] |
Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W.; Skiff, W. J. Am. Chem. Soc. 1992, 114, 10024.
doi: 10.1021/ja00051a040 |
[51] |
Buch, V. J. Chem. Phys. 1994, 100, 7610.
|
[52] |
Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.
doi: 10.1021/jp972543+ |
[53] |
Abascal, J. L. F.; Vega, C. J. Chem. Phys. 2005, 123, 234505.
doi: 10.1063/1.2121687 |
[54] |
Rappe, A. K.; Goddard, W. A. J. Chem. Phys. 1991, 95, 3358.
doi: 10.1021/j100161a070 |
[55] |
Simon, C. M.; Mercado, R.; Schnell, S. K.; Smit, B.; Haranczyk, M. Chem. Mater. 2015, 27, 4459.
doi: 10.1021/acs.chemmater.5b01475 |
[56] |
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, É. J. Mach. Learn. Res. 2011, 12, 2825.
|
[57] |
Archer, K. J.; Kimes, R. V. Comput. Stat. Data An. 2008, 52, 2249.
doi: 10.1016/j.csda.2007.08.015 |
[58] |
Lundberg, S.; Lee, S. I. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17), Ed.: Hook, R., Curran Associates Inc., New York, 2017,p. 4768.
|
[59] |
Tong, M. M.; Yang, Q. Y.; Zhong, C. L. Microporous Mesoporous Mater. 2015, 210, 142.
doi: 10.1016/j.micromeso.2015.02.034 |
[60] |
Ma, R. M.; Colón, Y. J.; Luo, T. F. ACS Appl. Mater. Interfaces 2020, 12, 34041.
doi: 10.1021/acsami.0c06858 |
[61] |
Fanourgakis, G. S.; Gkagkas, K.; Tylianakis, E.; Froudakis, G. E. J. Am. Chem. Soc. 2020, 142, 3814.
doi: 10.1021/jacs.9b11084 pmid: 32017547 |
[62] |
Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2013, 117, 7681.
doi: 10.1021/jp4006422 |
[63] |
Gülsoy, Z.; Sezginel, K. B.; Uzun, A.; Keskin, S.; Yıldırım, R. ACS Comb. Sci. 2019, 21, 257.
doi: 10.1021/acscombsci.8b00150 |
[64] |
Hu, J. H.; Zhao, J. F.; Yan, T. Y. J. Phys. Chem. C 2015, 119, 2010.
doi: 10.1021/jp512908k |
[1] | 刘洋, 高丰琴, 马占营, 张引莉, 李午戊, 侯磊, 张小娟, 王尧宇. 一例钴基金属有机框架化合物活化过氧单硫酸盐高效降解水中亚甲基蓝研究[J]. 化学学报, 2024, 82(2): 152-159. |
[2] | 孙博, 琚雯雯, 王涛, 孙晓军, 赵婷, 卢晓梅, 陆峰, 范曲立. 高分散共轭聚合物-金属有机框架纳米立方体的制备及抗肿瘤应用[J]. 化学学报, 2023, 81(7): 757-762. |
[3] | 齐学平, 王飞, 张健. 后合成法构筑钛基金属有机框架及其应用[J]. 化学学报, 2023, 81(5): 548-558. |
[4] | 殷政, 赵英博, 曾明华. 动态化学与材料和非晶物理新关联——金属有机框架玻璃的挑战、进展与新机遇[J]. 化学学报, 2023, 81(3): 246-252. |
[5] | 戚兴怡, 胡耀峰, 王若愚, 杨雅清, 赵宇飞. 机器学习在新材料筛选方面的应用进展[J]. 化学学报, 2023, 81(2): 158-174. |
[6] | 陈俊畅, 张明星, 王殳凹. 晶态多孔材料合成方法的研究进展[J]. 化学学报, 2023, 81(2): 146-157. |
[7] | 韩逸之, 蓝建慧, 刘学, 石伟群. 基于机器学习势函数的熔盐体系分子动力学研究进展[J]. 化学学报, 2023, 81(11): 1663-1672. |
[8] | 程敏, 王诗慧, 罗磊, 周利, 毕可鑫, 戴一阳, 吉旭. 面向乙烷/乙烯分离的金属有机框架膜的大规模计算筛选[J]. 化学学报, 2022, 80(9): 1277-1288. |
[9] | 闫绍兵, 焦龙, 何传新, 江海龙. ZIF-67/石墨烯复合物衍生的氮掺杂碳限域Co纳米颗粒用于高效电催化氧还原[J]. 化学学报, 2022, 80(8): 1084-1090. |
[10] | 闫续, 屈贺幂, 常烨, 段学欣. 金属有机框架在气体预富集、预分离及检测中的应用[J]. 化学学报, 2022, 80(8): 1183-1202. |
[11] | 何家伟, 焦柳, 程雪怡, 陈光海, 吴强, 王喜章, 杨立军, 胡征. 金属有机框架衍生的空心碳纳米笼的结构调控与锂硫电池性能研究[J]. 化学学报, 2022, 80(7): 896-902. |
[12] | 曹琳安, 魏敏. 电子导电金属有机框架薄膜的研究进展[J]. 化学学报, 2022, 80(7): 1042-1056. |
[13] | 谢晨帆, 徐玉平, 高明亮, 徐忠宁, 江海龙. MOF基Pd单位点催化CO酯化制碳酸二甲酯[J]. 化学学报, 2022, 80(7): 867-873. |
[14] | 耿元昊, 林小秋, 孙亚昕, 李惠雨, 秦悦, 李从举. 双金属导电金属有机框架材料Ni/Co-CAT的制备及其氧还原催化性能研究[J]. 化学学报, 2022, 80(6): 748-755. |
[15] | 刘雨泽, 李昆华, 黄佳兴, 于曦, 胡文平. 多组件学习器实现有机分子沸点的精准预测[J]. 化学学报, 2022, 80(6): 714-723. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1762
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||