Acta Chim. Sinica ›› 2015, Vol. 73 ›› Issue (2): 116-125.DOI: 10.6023/A14110779 Previous Articles     Next Articles



刘梦莹a, 车佳宁a, 吴蔚闳a, 卢运祥a, 彭昌军a, 刘洪来a, 卢浩b, 杨强b, 汪华林b   

  1. a 华东理工大学结构可控先进功能材料及其制备教育部重点实验室和化学系 上海 200237;
    b 华东理工大学国家环境保护化工过程环境风险评价与控制重点实验室 上海 200237
  • 收稿日期:2014-11-12 出版日期:2015-02-14 发布日期:2015-01-29
  • 通讯作者: 彭昌军,; Tel &Fax: 021-64252218;杨强,, Tel &Fax: 021-64252748.;
  • 基金资助:

    项目受国家自然科学基金(Nos. 21103047, 21136004)和中央高校基本科研业务费资助(No. 222201313001).

Extraction of Copper from Aqueous Solution with Functional Ionic Liquids: Experiment and Theoretical Calculation

Liu Mengyinga, Che Jianinga, Wu Weihonga, Lu Yunxianga, Peng Changjuna, Liu Honglaia, Lu Haob, Yang Qiangb, Wang Hualinb   

  1. a Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China;
    b Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
  • Received:2014-11-12 Online:2015-02-14 Published:2015-01-29
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21103047, 21136004) and the Fundamental Research Funds for the Central Universities of China (No. 222201313001).

This work studied the extraction of copper (II) ions from aqueous solution with thiourea-appended imidazolium hydrophobic ionic liquids and the extraction mechanism by experiment and theory. The influence of parameters affecting the extraction of copper ion, such as the metal ion concentrations, volume ratio between aqueous solution and ionic liquid, contact time, sodium chloride and pH, as well as alkyl chain length was analyzed. In the case of room temperature, the volume ratio between aqueous/IL phases was 50, the extraction efficiencies >95% could be obtained for copper ion with all the ionic liquids [CnMPSM][PF6] (n=4, 6, 8). The results also suggest that n=4 did the same work on the extraction efficiency with n=6 but higher than n=8, while pH and the salt in the solution had little effect on the extraction efficiency for the extraction with [HMPSM][PF6]. The grafted functional group significantly enhanced the extraction efficiency for Cu2+ from 20% to over 99% compared with traditional ILs. To the IL [HMPSM][PF6], the content of imidazolium cation in the aqueous solution before and after extraction with functional IL reduces from 1.24% to 0.85% which means the coordination effect between functional group and the metal ion restrains the release of [HMPSM]+ cation from functional IL to the aqueous solution, while it increases from 0.63% to 0.87% for traditional IL, which is consistent with the results caused by the cation exchange mechanism. In the theory part, the lanl2dz-ECP basis set was employed for transition metal Cu, whereas for the remaining atoms 6-31G (d,p) was applied, cation-anion interaction energies of the ILs and the binding energies between Cu (II) ion and the ILs were calculated, also the surface properties most-negative-surface electrostatic potential (Vs,min) and the lowest surface average local ionization energy (īs,min), were determined by the Multiwfn 2.4 program. All the calculation results show that the sulfur atom from cation is easier to attract the metal ion electrostatically and covalently, thus leads to the high efficiency of extraction.

Key words: thiourea-appended, ionic liquids, extraction, copper, calculation