Acta Chimica Sinica ›› 2020, Vol. 78 ›› Issue (7): 597-612.DOI: 10.6023/A20050153 Previous Articles     Next Articles



张晋维, 李平, 张馨凝, 马小杰, 王博   

  1. 北京理工大学 化学与化工学院 北京 100081
  • 投稿日期:2020-05-09 发布日期:2020-06-19
  • 通讯作者: 马小杰, 王博;
  • 作者简介:张晋维,北京理工大学硕士研究生.2017年本科毕业于北京理工大学,现于北京理工大学攻读硕士学位.主要研究领域为MOFs材料的水吸附性质以及湿度调节性能.
  • 基金资助:

Water Adsorption Properties and Applications of Stable Metal-organic Frameworks

Zhang Jinwei, Li Ping, Zhang Xinning, Ma Xiaojie, Wang Bo   

  1. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081
  • Received:2020-05-09 Published:2020-06-19
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Nos. 21625102, 21801017, 21490570, 21674012), Beijing Municipal Science and Technology Project (No. Z181100004418001), and Beijing Institute of Technology Research Fund Program.

Metal-organic frameworks (MOFs), featuring the ultrahigh surface area, high porosity, tunable geometrical and chemical properties, show potential applications in gas adsorption/separation, heterogenous catalysis, etc. As the ubiquity of water vapor in the ambient environment and industrial gas streams, it is necessary to study on interaction mechanism between MOFs and water molecules and develop highly water-stable MOFs with desirable water adsorption/desorption behaviors. It not only has the scientific significance, but also great importance in promoting the practical applications of MOFs. Given the tailorable abilities of pore size, pore volume, cavity hydrophilicity and water stability, MOFs provide unprecedented advantages to explore the well-defined porous sorbents in molecular level, which facilitates the realization of reversible water vapor uptake and release at expected relative pressure and temperature together with high working capacity. For now, a wide range of hydrolytically stable MOFs including high-valence metal (e.g. Cr3+, Al3+, Zr4+, Ti4+) based frameworks have emerged as the advanced and promising porous sorbents for energy efficient applications, by utilizing water as eco-friendly adsorbate media and renewable heat. This review focuses on the following aspects:(1) the degradation mechanism of MOFs in liquid phase of water and the design concepts of hydrolytically stable MOFs by modulating their coordination bond based on the Pearson' hard/soft acid/base principle; (2) the physical or chemical water ad/desorption properties of MOFs; (3) the classification of numerous MOFs sorbents and conventional desiccants based on their hydrophilicity, which is approximately reflected by the relative humidity (RH) value of the inflection points (the RH where the steep uptake starts) in isotherms; (4) a variety of water adsorption-based applications of MOFs such as industrial gas dehydration, drinking water harvesting in the desert area, adsorption-based heat pump and indoor humidity regulation. Finally, the research priorities and development outlook are summarized and the future challenge with respect to water adsorption-based applications for the next-generation MOFs are outlined.

Key words: metal-organic frameworks, water stability, water vapor adsorption, water vapor desorption, adsorption mechanism