Acta Chimica Sinica ›› 2020, Vol. 78 ›› Issue (9): 833-847.DOI: 10.6023/A20050167 Previous Articles     Next Articles



封博谞, 庄小东   

  1. 上海交通大学化学化工学院 变革性分子前沿科学中心 介熵物质研究室 上海 200240
  • 投稿日期:2020-05-15 发布日期:2020-06-29
  • 通讯作者: 庄小东
  • 作者简介:封博谞,硕士毕业于南开大学化学学院,现为上海交通大学化学化工学院在读博士研究生,目前的研究方向为二维软物质与介熵材料的合成方法学开发;庄小东,毕业于华东理工大学(学士2006/博士2011),现为上海交通大学高分子系教授.长期致力于二维软物质及其介熵材料的可控制备,并基于第一性原理计算研究结构与性能之间的关系.曾获国家自然科学基金优秀青年基金资助(2017)、国际先进材料学会年度金奖(2019)、中国化学会元素周期表年中国青年化学家称号(2019)、英国皇家化学会新兴科学家称号(2019)、教育部自然科学奖(2019)、上海市自然科学奖(2010)、全国百篇优秀博士论文提名(2014).
  • 基金资助:

Carbon-Enriched meso-Entropy Materials: from Theory to Cases

Feng Boxu, Zhuang Xiaodong   

  1. The meso-Entropy Matter Lab, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-05-15 Published:2020-06-29
  • Supported by:
    Project supported by the National Natural Science Foundation of China Excellent Young Scientists Fund (No. 51722304), National Key Research and Development Program of China (No. 2017YFE9134000), the National Natural Science Foundation of China (Nos. 51973114, 21720102002, 51811530013), Shanghai Pujiang Talent Program (No. 18PJ1406100), Science and Technology Commission of Shanghai Municipality (No. 19JC412600).

Carbon-enriched materials, including carbon allotropes, polycyclic aromatic hydrocarbons, polymers, frameworks, etc., are rising as stars in functional materials field. Large amount of reported work focused on development of new structures with typical features for novel applications, and has long ignored the intrinsic relationship between similar structures. The superficial relationships of those carbon-enriched materials in textbook, e.g., isomers, allotropes and topological defects, are no longer enough for fundamental understanding the structure-property relationship study due to more and more carbon-enriched materials have been developed. Such disadvantage has long hindered development of new materials based on well-established material systems. In this work, meso-entropy concept is proposed for understanding and development of different kinds of carbon-enriched materials by comparing their relative entropy values. Based on theoretical models and case-to-case discussion, meso-entropy concept has been found compatible with the concept of isomers, allotropes and topological defects in carbon-enriched materials. From now on, hopefully, the meso-entropy defined relationship for carbon-enriched materials will be no longer staying at the geometric level, and provide new thinking development of new carbon-enriched materials and other meso-entropy materials.

Key words: meso-entropy, carbon, polymer, structure-property relationship, preparation