Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (3): 344-352.DOI: 10.6023/A20100476 Previous Articles Next Articles
Article
投稿日期:
2020-10-15
发布日期:
2020-12-24
通讯作者:
隋曼龄
作者简介:
基金资助:
Yue Lua,b, Yang Gea,b, Manling Suia,b,*()
Received:
2020-10-15
Published:
2020-12-24
Contact:
Manling Sui
Supported by:
Share
Yue Lu, Yang Ge, Manling Sui. Different Degradation Mechanism of CH3NH3PbI3 Based Perovskite Solar Cells under Ultraviolet and Visible Light Illumination[J]. Acta Chimica Sinica, 2021, 79(3): 344-352.
[1] |
National Renewable Energy Laboratory NREL. Best Research-Cell Efficiency Chart 2020, https://www.nrel.gov/pv/cell-efficiency.html.
|
[2] |
Ji, J.; Liu, X.; Jiang, H. R.; Duan, M. J.; Liu, B. Y.; Huang, H.; Wei, D.; Li, Y. D.; Li, M. C. iScience 2020, 23,101013.
doi: 10.1016/j.isci.2020.101013 pmid: 32299056 |
[3] |
Wang, M. H.; Wan, L.; Gao, X, Y.; Yuan, W. B.; Fang, J. F.; Tao, Y. T.; Huang, W. Acta Chim. Sinica 2019, 77,741. c62e2ed1-c90e-4832-afd9-25274164b4e9
doi: 10.6023/A19060200 |
( 王梦涵, 万里, 高旭宇, 袁文博, 方俊峰, 陶友田, 黄维, 化学学报, 2019, 77,741.) c62e2ed1-c90e-4832-afd9-25274164b4e9
doi: 10.6023/A19060200 |
|
[4] |
Li, X.; Zhang, T. Y.; Wang, T.; Zhao, Y. X. Acta Chim. Sinica 2019, 77,1075.
doi: 10.6023/A19080292 |
( 李鑫, 张太阳, 王甜, 赵一新, 化学学报, 2019, 77, 1075.)
|
|
[5] |
Liu, X.; Wang, Y. B.; Wu, T. H.; He, X.; Meng, X. Y.; Barbaud, J. L.; Chen, H.; Segawa, H.; Yang, X. D.; Han, L. Y. Nat. Commun. 2020, 11,2678.
pmid: 32472006 |
[6] |
Wang, Y. B.; Wu, T. H.; Barbaud, J.L; Kong, W. Y.; Chen, H.; Yang, X. D.; Han, L. Y. Science 2019, 365,687.
doi: 10.1126/science.aax8018 pmid: 31416961 |
[7] |
Yang, Y.; Zhu, C. T.; Lin, F. Y.; Chen, T.; Pan, D. Q.; Guo, X. Y. Acta Chim. Sinica 2019, 77,964. 5a45d5ba-a7b8-4619-b37e-b2fcd6fdda67
doi: 10.6023/A19040143 |
( 杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益. 化学学报, 2019, 77,964.) 5a45d5ba-a7b8-4619-b37e-b2fcd6fdda67
doi: 10.6023/A19040143 |
|
[8] |
Li, N. X.; Tao, S. X.; Chen, Y. H.; Niu, X. X.; Onwudinati, C. K.; Hu, C.; Qiu, Z. W.; Xu, Z. Q.; Zheng, G. H. J.; Wang, L. G.; Zhang, Y.; Li, L.; Liu, H. F.; Lun, Y. Z.; Hong, J. W.; Wang, X. X.; Liu, Y. Q.; Xie, H. P.; Gao, Y. L.; Bai, Y.; Yang, S. H.; Brocks, G.; Chen, Q.; Zhou, H. P. Nat. Energy 2019, 4,408.
doi: 10.1038/s41560-019-0382-6 |
[9] |
Ren, H.; Yu, S. D.; Chao, L. F.; Xia, Y. D.; Sun, Y. H.; Zuo, S. W.; Li, F.; Niu, T. T.; Yang, Y. G.; Ju, h. X.; Du, H. Y.; Gao, X. Y.; Zhang, J.; Wang, J. P.; Zhang, L. J.; Chen, Y. H.; Huang, W. Nat. Photonics 2020, 14,154.
doi: 10.1038/s41566-019-0572-6 |
[10] |
Chen, X. Y.; Xie, J. J.; Wang, W.; Yuan, H. H.; Xu, D.; Zhang, T.; He, Y. L.; Shen, H. J. Acta Chim. Sinica 2019, 77,9. 9c89b163-7dd0-4ca5-a4dd-1c917b3bf498
doi: 10.6023/A18100447 |
( 陈薪羽, 解俊杰, 王炜, 袁慧慧, 许頔, 张焘, 何云龙, 沈沪江. 化学学报, 2019, 77,9.) 9c89b163-7dd0-4ca5-a4dd-1c917b3bf498
doi: 10.6023/A18100447 |
|
[11] |
Li, X. D.; Zhang, W. X.; Wang, Y. C.; Zhang, W. J.; Wang, H. Q.; Fang, J. F. Nat. Commun. 2018, 9,3806.
doi: 10.1038/s41467-018-06204-2 pmid: 30228277 |
[12] |
Li, N. X.; Niu, X. X.; Chen, Q.; Zhou, H. P. Chem. Soc. Rev. 2020, 49,8235.
doi: 10.1039/d0cs00573h pmid: 32909584 |
[13] |
Ono, L. K.; Qi, Y. B.; Liu, S. Z. Joule 2018, 2,1961.
doi: 10.1016/j.joule.2018.07.007 |
[14] |
Meng, L.; You, J. B.; Yang, Y. Nat. Commun. 2018, 9,5265.
pmid: 30532038 |
[15] |
Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D. Chem. Rev. 2019, 119,3418.
pmid: 30444609 |
[16] |
Qu, Q. D.; Bao, X. Z.; Zhang, Y. A.; Shao, H. Y.; Xing, G. H.; Li, X. P.; Shao, L. Y.; Bao, Q. L. Nano Mater. Sci. 2019, 1,268.
|
[17] |
Qaid, S. M. H.; Al Sobaie, M. S.; Khan, M. A.; Bedja, I. M.; Alharbi, F. H.; Nazeeryddin, M. K.; Aldwayyan, A. S. Mater. Lett. 2016, 164,498.
doi: 10.1016/j.matlet.2015.10.135 |
[18] |
Eames, C.; Frost, J. M.; Barnes, P. R.; O’regan, B. C.; Walsh, A.; Islam, M. S. Nat. Commun. 2015, 6,7497.
doi: 10.1038/ncomms8497 pmid: 26105623 |
[19] |
Meloni, S.; Moehl, T.; Tress, W.; Franckevičius, M.; Saliba, M.; Lee, Y. H.; Gao, P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Rothlisberger, U.; Graetzel, M. Nat. Commun. 2016, 7,10334.
doi: 10.1038/ncomms10334 pmid: 26852685 |
[20] |
Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Energ. Environ. Sci. 2015, 8,2118.
doi: 10.1039/C5EE01265A |
[21] |
Setlow, R. B. Natl. Acad. Sci. 1974, 71,3363.
doi: 10.1073/pnas.71.9.3363 |
[22] |
Travkin, V. V.; Yunin, P. A.; Fedoseev, A. N.; Okhapkin, A. I.; Sachkov, Y. I.; Pakhomov, G. L. Solid State. Sci. 2020, 99,106051.
doi: 10.1016/j.solidstatesciences.2019.106051 |
[23] |
Lu, Y.; Ge, Y.; Sui, M. L. Acta Phys.-Chim. Sin. 2021, 37,2007088.
|
( 卢岳, 葛杨, 隋曼龄, 物理化学学报, 2021, 37,2007088.)
|
|
[24] |
Lee, S. W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L. E.; Lee, S.; Park, S.; Park, H.; Schubert, M. C.; Glunz, S. W.; Ko, Y.; Jun, Y. Kang, Y.; Lee, H. S.; Kim, D. Sci. Rep. 2016, 6,38150.
doi: 10.1038/srep38150 pmid: 27909338 |
[25] |
Nickel, N. H.; Lang, F.; Brus, V. V.; Shargaieva, O.; Rappich, J. Adv. Electron. Mater. 2017, 3,1700158.
doi: 10.1002/aelm.201700158 |
[26] |
Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4,3885.
|
[27] |
Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. Nat. Energy 2016, 2,16177.
doi: 10.1038/nenergy.2016.177 |
[28] |
Farooq, A.; Hossain, I. M.; Moghadamzadeh, S.; Schwenzer, J. A.; Abzieher, T.; Richards, B.; Klampaftis, E.; Paetzold, U. W. ACS Appl. Mater. Interfaces 2018, 10,21985.
pmid: 29888902 |
[29] |
Roose, B.; Baena, J. P. C.; Gödel, K. C.; Graetzel, M.; Hagfeldt, A.; Steiner, U.; Abate, A. Nano Energy 2016, 30,517.
doi: 10.1016/j.nanoen.2016.10.055 |
[30] |
Zou, W. Y.; Gonzalez, A; Jampaiah, D.; Ramanathan, R.; Taha, M.; Walia, S.; Sriram, S.; Bhaskaran, M.; Dominguez-Vera, J. M.; Bansal, V. Nat. Commun. 2018, 9,3743.
doi: 10.1038/s41467-018-06273-3 pmid: 30254260 |
[31] |
Bella, F.; Griffini, G.; Correa-Baena, J. P.; Saracco, G.; Grätzel, M.; Hagfeldt, A.; Turri, S.; Gerbaldi, C. Science 2016, 354,203.
doi: 10.1126/science.aah4046 pmid: 27708051 |
[32] |
Krishnan, U.; Kaur, M.; Kumar, M.; Kumar, A. J. Photon. Energy 2019, 9,021001.
|
[33] |
Sun, Y.; Fang, X.; Ma, Z.; Xu, L.; Lu, Y.; Yu, Q.; Yuan, N. Y.; Ding, J. J. Mater. Chem. C 2017, 5,8682.
doi: 10.1039/C7TC02603J |
[34] |
Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. J. Phys. Chem. C 2014, 118,16995.
doi: 10.1021/jp500449z |
[35] |
Wang, S. H.; Jiang, Y.; Juarez-Perez, E. J.; Ono, L. K.; Qi, Y. B. Nat. Energy 2017, 2,16195.
doi: 10.1038/nenergy.2016.195 |
[36] |
Beresolin, B. M.; Hammouda, S. B.; Sillanpaa, M. Nanomaterials 2020, 10,115.
doi: 10.3390/nano10010115 |
[37] |
Lang F. X.; Shargaieva O.; Brus V. V.; Neitzert H. C.; Rappich J.; Nickel N. H. Adv. Mater. 2018, 30,1702905.
doi: 10.1002/adma.v30.3 |
[38] |
Song, Z. M.; Wang, C. L.; Phillips, A. B.; Grice, C. R.; Zhao, D. W.; Yu, Y.; Chen, C.; Li, C; W.; Yin, X. X.; Ellingson, R. J.; Heben, M; J.; Yan, Y. F. Sustain. Energ. Fuels. 2018, 2,2460.
doi: 10.1039/C8SE00358K |
[39] |
Tang, X.; Brandl, M.; May, B.; Levchuk, I.; Hou, Y.; Richter, M.; Chen, H. W.; Chen, S.; Kahmann, S.; Osvet, A.; Maier, F.; Steinrück, H. P.; Hock, R.; Matt, G. J.; Brabec, C. J. Mater. Chem. A 2016, 4,15896.
doi: 10.1039/C6TA06497C |
[40] |
Juarez-Perez, E. J.; Ono, L. K.; Maeda, M.; Jiang, Y.; Hawash, Z.; Qi, Y. J. Mater. Chem. A 2018, 6,9604.
doi: 10.1039/C8TA03501F |
[41] |
Xiong, L. B.; Guo, Y. X.; Wen, J.; Liu, H. R.; Yang, G.; Qin, P. L.; Fang, G. J. Adv. Funct. Mater. 2018, 28,1802757.
doi: 10.1002/adfm.v28.35 |
[42] |
Bai, H.; Kanda, H. Asiri, A.; Nazeeruddin, M.; Mallick, T. Sustainable Energy Fuels 2020, 4,528.
doi: 10.1039/C9SE00550A |
[43] |
Ompong, D.; Singh, J. Org. Electron. 2018, 63,104.
doi: 10.1016/j.orgel.2018.09.006 |
[44] |
Williams, D. B.; Carter, C. B. The transmission electron microscope. Springer, Boston, MA, 1996, pp.3-17.
|
[45] |
Shlenskay, N. N.; Belich, N. A.; Grätzel, M.; Goodilin, E. A. Tarasov, A. B. J. Mater. Chem. A. 2018, 6,1780.
doi: 10.1039/C7TA10217H |
[46] |
Ming, W, M.; Yang, D. W.; Li, T. S.; Zhang, L. J.; Du, M. H. Adv. Sci. 2018, 5.1700662.
doi: 10.1002/advs.201700662 |
[47] |
Jiang, C. S.; Yang, M.; Zhou, Y.; To, B.; Nanayakkara, S. U.; Luther, J. M.; Zhou, W. L.; Berry, J. J.; de Lagemaat, J. van.; Padture, N. P.; Zhu, K.; Al-Jassim, M. M. Nat. Commun. 2015, 6,8397.
doi: 10.1038/ncomms9397 pmid: 26411597 |
[48] |
Hang, P. J.; Xie, j. s.; Li, G.; Wang, Y.; Fang, D. S.; Yao. Y. X.; Xie, D. Y.; Cui, C.; Yan, K. Y.; Xu, J. B.; Yang, D. R.; Yu, X. G. iScience 2019, 21,217.
pmid: 31675551 |
[49] |
Bakra, Z. H.; Wali, Q.; Fakharuddin, A.; Schmidt-Mende, L.; Brown, T. M., Jose, R. Nano Energy 2017, 34,271.
doi: 10.1016/j.nanoen.2017.02.025 |
[50] |
Wu, S.; Chen, R.; Zhang, S.; Babu, B. H.; Yue, Y.; Zhu, H.; Yang, Z. C.; Chen, C. L.; Chen, W. T.; Huang, Y. Q.; Fang, S. Y.; Liu, T. L.; Han, L. Y.; Chen, W. Nat. Commun. 2019, 10,1161.
pmid: 30858370 |
[51] |
Barboni, D.; Souza, R. A. Energ. Environ. Sci. 2018, 11,3266.
doi: 10.1039/C8EE01697F |
[52] |
Wang, S.; Yuan, W.; Meng, Y. S. ACS Appl. Mater. Inter. 2015, 7,24791.
doi: 10.1021/acsami.5b07703 |
[53] |
Sanchez, R. S.; Mas-Marza, E. Sol. Energ. Mate. Sol. C. 2016, 158,189.
|
[54] |
Khenkin, M. V.; Katz, E. A.; Abate, A.; Bardizza, G.; Berry, J. J.; Brabec, C. J.; Brunetti, F.; Bulovic, V.; Burlingame, Q.; Di Carlo, A.; Cheacharoen, R.; Cheng, Y. B.; Colsmann, A.; Cros, S.; Domanski, K.; Dusza, M.; Fell, C. J.; Forrest, S. R.; Galagan, Y.; Di Girolamo, D.; Grätzel, M.; Hagfeldt, A.; von Hauff, E.; Hoppe, H.; Kettle, J.; Köbler, H.; Leite, M. S.; Liu, S. (Frank); Loo, Y. L.; Luther, J. M.; Ma, C. Q.; Madsen, M.; Manceau, M.; Matheron, M.; McGehee, M.; Meizner, R.; Nazeeruddin, M. K.; Nogueira, A. F.; Odaba, Ç.; Osherov, A.; Park, N. G.; Reese, M. O.; De Rossi, F.; Saliba, M.; Schubert, U. S.; Snaith, H. J.; Stranks, S. D.; Tress, W.; Troshin, P. A.; Turkovic, V.; Veenstra, S.; Visoly-Fisher, I.; Walsh, A.; Watson, T.; Xie, H. B.; Yıldırım, R.; Zakeeruddin, S. M.; Zhu, K.; Lira-Cantu, M. Nat. Energy 2020, 5,35.
|
[55] |
Lu, Y.; Yin, W. J.; Peng, K. L.; Wang, K.; Hu, Q.; Selloni, A.; Liu, L. M.; Sui, M. L. Nat. Commun. 2018, 9,2752.
doi: 10.1038/s41467-018-05144-1 pmid: 30013174 |
[1] | Yang Ying, Lin Feiyu, Zhu Congtan, Chen Tian, Ma Shupeng, Luo Yuan, Zhu Liu, Guo Xueyi. Research Progress in the Stability of Inorganic Perovskite Solar Cells [J]. Acta Chimica Sinica, 2020, 78(3): 217-231. |
[2] | Wang Menghan, Wan Li, Gao Xuyu, Yuan Wenbo, Fang Junfeng, Tao Youtian, Huang Wei. Synthesis of D-π-A-π-D Type Dopant-Free Hole Transporting Materials and Application in Inverted Perovskite Solar Cells [J]. Acta Chimica Sinica, 2019, 77(8): 741-750. |
[3] | Yang, Ying, Zhu, Congtan, Lin, Feiyu, Chen, Tian, Pan, Dequn, Guo, Xueyi. Research Progress of Inverted Perovskite Solar Cells [J]. Acta Chimica Sinica, 2019, 77(10): 964-976. |
[4] | Yang Ying, Chen Tian, Pan Dequn, Zhang Zheng, Guo Xueyi. Research Progress of Bifacial Solar Cells with Transparent Counter Electrode [J]. Acta Chim. Sinica, 2018, 76(9): 681-690. |
[5] | Zhao Cong, Ma Ying, Wang Yang, Zhou Xue, Li Huizeng, Li Mingzhu, Song Yanlin. Research Progress of Photonic Crystal Solar Cells [J]. Acta Chimica Sinica, 2018, 76(1): 9-21. |
[6] | Rong Genlan, Zhang Xinyi, Xu Yan, Zhang Yuegang. In-situ TEM Study of the Liquid-Phase Reaction of Ag Nanowires with a Sulfur Solution [J]. Acta Chim. Sinica, 2016, 74(12): 980-983. |
[7] | Shi Jianping, Ma Donglin, Zhang Yanfeng, Liu Zhongfan. Controllable Growth of MoS2 on Au Foils and Its Application in Hydrogen Evolution [J]. Acta Chim. Sinica, 2015, 73(9): 877-885. |
[8] | Xue Qifan, Sun Chen, Hu Zhicheng, Huang Fei, Yip Hin-Lap, Cao Yong. Recent Advances in Perovskite Solar Cells: Morphology Control and Interfacial Engineering [J]. Acta Chimica Sinica, 2015, 73(3): 179-192. |
[9] | Guo Xudong, Niu Guangda, Wang Liduo. Chemical Stability Issue and Its Research Process of Perovskite Solar Cells with High Efficiency [J]. Acta Chim. Sinica, 2015, 73(3): 211-218. |
[10] | Zhou You, Gao Faming, Guo Wenfeng, Hou Li. Synthesis and Characterization of Hexagonal Boron Carbonitride Compounds Prepared by Solvothermal Method [J]. Acta Chimica Sinica, 2012, 0(04): 436-440. |
[11] | PANG Xue-Hui, ZHANG Yu-Xuan, ZHANG Jie, JIE Jian-Dong, HOU Bao-Rong. Corrosion Inhibition and Mechanisms Study on Pipemidic Acid, Levofloxacin and Ciprofloxacin for Mild Steel in 0.5 mol/L H2SO4 [J]. Acta Chimica Sinica, 2011, 69(04): 483-491. |
[12] | LIU Shou-Xin, FANG Yu*,1, LIU Ming-Zhu2, WANG Ming-Zhen, WANG Zhuan-Rong. Synthesis and Characterization of Temperature- and pH-Sensitive Poly(N,N-diethylacrylamide-co-methacrylic acid) Hydrogels with Expanded Conformations [J]. Acta Chimica Sinica, 2006, 64(15): 1575-1580. |
[13] | YAN Yong-Li*,1,ZHANG Ning-Sheng2,QU Cheng-Tun3,LIU Li4,LI Bian-Qin3. Investigation of Microstructure of Colloidal Liquid Aphrons [J]. Acta Chimica Sinica, 2005, 63(21): 1944-1950. |
[14] | FU Li-Hong*1,2,CHENG Jing-Qiu2,LAI Guo-Li. Biomimetic Synthesis of Calcium Carbonate with the Existence of the Gelatin Matrix [J]. Acta Chimica Sinica, 2005, 63(17): 1626-1632. |
[15] | Chang Gang;Jiang ZuCheng;Peng TianYou;Hu Bin. Preparation of High-Specific-Surface-Area Nanometer-sized Alumina by Sol-Gel Method and Study on Adsorption Behaviors of Transition Metal Ions on the Alumina Powder with ICP-AES [J]. Acta Chimica Sinica, 2003, 61(1): 100-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||