Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (7): 820-835.DOI: 10.6023/A23040119 Previous Articles     Next Articles



刘振宇, 饶俊峰, 祝守加, 王兵洋, 余帆, 冯全友*(), 解令海*()   

  1. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室 南京 210023
  • 投稿日期:2023-04-07 发布日期:2023-05-17
  • 作者简介:

    刘振宇, 南京邮电大学信息材料与纳米技术研究院/材料科学与工程学院2020级研究生, 导师为冯全友副教授. 主要从事有机发光材料的设计合成及其性能研究.

    冯全友, 南京邮电大学化学与生命科学学院副教授、硕士生导师. 2005至2009年就读于西南大学化学与化工学院, 获得学士学位. 2009至2014年就读于复旦大学先进材料实验室, 获得博士学位(导师:周刚教授、王忠胜教授). 随后加入南京邮电大学信息材料与纳米技术研究院/材料科学与工程学院. 2015至2017年在弗吉尼亚理工大学从事博士后研究(导师: Tong Rong教授). 目前主要研究方向为有机/聚合物宽带隙半导体材料及其光电子器件.

    解令海, 南京邮电大学信息材料与纳米技术研究院/化学与生命科学学院教授、博士生导师, 国家自然科学基金优秀青年科学基金获得者. 2000年和2003年分别获得东北师范大学学士学位和汕头大学硕士学位. 2003至2006年就读于复旦大学先进材料研究院, 获得博士学位(导师:黄维院士). 长期从事多功能有机半导体材料的设计合成及其在有机发光、有机激光、有机存储和忆阻器等领域的应用研究.

  • 基金资助:
    江苏省自然科学基金(BK20190090); 有机电子与信息显示国家重点实验室(GZR2022010020)

Research Progress of Solution-Processed Self-Host Thermally Activated Delayed Fluorescence Materials

Zhenyu Liu, Junfeng Rao, Shoujia Zhu, Bingyang Wang, Fan Yu, Quanyou Feng(), Linghai Xie()   

  1. State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023
  • Received:2023-04-07 Published:2023-05-17
  • Contact: *E-mail:;
  • Supported by:
    Natural Science Foundation of Jiangsu Province(BK20190090); State Key Laboratory of Organic Electronics and Information Displays(GZR2022010020)

Over the past decade, thermally activated delayed fluorescence (TADF) materials have gained widespread attention within both the academic and industrial domains as the third-generation organic light-emitting diode (OLED) emitters. TADF molecules exhibit a small energy gap between the lowest singlet and triplet excited states (ΔEST), thereby facilitating the conversion of triplet excitons to singlet states through reverse intersystem crossing (RISC) upon thermal activation. This characteristic presents the theoretical possibility of achieving 100% exciton utilization, thereby substantially enhancing the external quantum efficiency of OLED devices. Solution processing offers several advantages, such as low cost, simple methods, high material utilization, and large-scale production, rendering it an ideal candidate for the fabrication of flexible and printable OLED devices. The host material with excellent charge transfer capabilities can effectively reduce exciton density and facilitate efficient energy transfer. Consequently, solution-processed devices constructed using self-host TADF materials can effectively balance charge carrier transport and avoid phase separation, thereby maintaining film uniformity, enhancing device performance and improving device stability. This review provides a comprehensive summary of the advancements made in the field of solution-processed self-host TADF materials. First, the basic principles and research significance of TADF materials are introduced, highlighting the potential applications of solution-processed self-host TADF materials in display and lighting devices. Subsequently, an overview of the current research progress on various classifications of solution-processed self-host TADF materials, including small molecules, dendrimers, and polymers are presented. Special emphasis is placed on elucidating the material structures and their performance within devices. Finally, a future outlook is provided regarding the development trend of self-host TADF materials, including their current deficiencies, existing issues, and potential solutions. The review aims to serve as a valuable reference for researchers in related fields, while simultaneously fostering further advancement and application of TADF materials.

Key words: organic light-emitting diode, thermally activated delayed fluorescence, solution-processed, self-host, non-doped