Acta Chimica Sinica ›› 2014, Vol. 72 ›› Issue (3): 401-406.DOI: 10.6023/A13080824 Previous Articles    

Special Issue: 石墨烯

Article

纤连蛋白在石墨烯修饰二氧化钛表面吸附的计算机模拟

杨川, 彭春望, 廖晨伊, 周健   

  1. 华南理工大学化学与化工学院 广东省绿色化学产品技术重点实验室 广州 510640
  • 投稿日期:2013-08-06 发布日期:2013-10-16
  • 通讯作者: 周健,E-mail:jianzhou@scut.edu.cn;Tel.:+0086-020-87114069 E-mail:jianzhou@scut.edu.cn
  • 基金资助:

    项目受国家重点基础研究发展计划(No. 2013CB733504);国家自然科学基金(No. 21376089);广东省自然科学基金(No. S2011010002078);中央高校基本科研业务费项目(No. SCUT-2013ZM0073);材料化学工程国家重点实验室开放基金(No. KL12-05)资助.

Computer Simulations of Fibronectin Adsorption on Graphene Modified Titanium Dioxide Surfaces

Yang Chuan, Peng Chunwang, Liao Chenyi, Zhou Jian   

  1. School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640
  • Received:2013-08-06 Published:2013-10-16
  • Supported by:

    Project supported by the National Key Basic Research Program of China (No. 2013CB733504), the National Natural Science Foundation of China (No. 21376089), Guangdong Science Foundation (No. S2011010002078), the Fundamental Research Funds for the Central Universities (No. SCUT-2013ZM0073), State Key Laboratory of Materials-Oriented Chemical Engineering (No. KL12-05).

Fibronectin (FN) could be used to modify the transplant of titanium dioxide. However, the hydrophilicity of titanium dioxide may prevent the stable adsorption of protein. Suitable hydrophobic modification of the surface can promote protein adsorption. In this work, all-atom molecular dynamics (MD) simulations were used to study the adsorption of FN on rutile surface, 23% graphene layer modified rutile surface, 92% graphene layer modified rutile surface and the graphite surface. The graphene layer can change the surface chemistry of rutile and break the strong interactions between rutile and water molecules. Parallel tempering Monte Carlo algorithm was used firstly to identify the global-minimum-energy orientation of FN. Subsequently, the orientation and conformation of adsorbed FN on modified titanium dioxide surfaces were studied by MD simulations. The simulation results show that FN can hardly adsorb on the rutile surface. Graphene layer deposited on titanium dioxide can reduce the surface hydrophilicity. When the rutile surface is covered by the graphene layer, FN adsorbs on the surface stably. The specific recognition site of FN faces toward the solution when FN is adsorbed on 23% graphene layer modified rutile surface, which is conducive to the identification of integrin. However, if too much graphene layer deposited on rutile, the specific recognition site of FN would get close to the surface due to the stronger adsorption. The minimum distance between FN and various surfaces can indicate the stability of protein adsorption on surfaces. DSSP analysis shows that the seven β-sheets of FN do not change much in all systems during the 40 ns MD simulations. Due to the deposition of graphene layer, the density of water molecules near the surface decreases. The adsorption energy of FN on different surfaces increases with higher surface graphene composition. Graphene modification could promote the fibronectin adsorption on rutile surfaces. This work can provide some guidance for the design and development of modified implant biomaterials.

Key words: computer simulation, protein adsorption, titanium dioxide, fibronectin, graphene, biomaterials