Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (5): 641-648.DOI: 10.6023/A20120576 Previous Articles Next Articles
Review
投稿日期:
2020-12-20
发布日期:
2021-02-22
通讯作者:
邢震宇
作者简介:
![]() |
林碧霞, 2011年于华南师范大学取得硕士学位, 目前主要研究方向集中于纳米材料的制备及其在光电领域的应用. |
![]() |
邢震宇, 2012年吉林大学取得化学学士学位, 2016年美国Oregon State University取得化学博士学位, 之后在加拿大University of Waterloo从事博士后研究, 自2018年被引进华南师范大学工作. 主要研究方向集中于基于金属热反应的材料制备及其在能源存储领域的应用, 尤其在碳材料和硫化锂材料的制备方面取得了系统性的研究进展. |
基金资助:
Bixia Lina, Yingshan Huanga, Shuai Chena, Zhenyu Xinga,b,*()
Received:
2020-12-20
Published:
2021-02-22
Contact:
Zhenyu Xing
About author:
Supported by:
Share
Bixia Lin, Yingshan Huang, Shuai Chen, Zhenyu Xing. Research Progress of Key Materials for Sodium-selenium Batteries[J]. Acta Chimica Sinica, 2021, 79(5): 641-648.
Material | Mass fraction of Se/% | Initial capacity/(mAh∙g–1) | Capacity retention/(mAh∙g–1) | Cycle | Rate | Ref. |
---|---|---|---|---|---|---|
Jackfruit-Se/C composite | 54 | 616 | 399 | 600 | 2 C | [ |
Se@NCAs | 47 | 599 | 407 | 800 | 0.5 A/g | [ |
Se-R800A | 66.7 | 300 | 300 | 500 | 2 A/g | [ |
Fe3C@C-Se | 72.6 | 457 (3rd) | 375 | 300 | 2 C | [ |
Se@N-HRMC | 72.6 | 500 (3rd) | 450 | 500 | 0.5 C | [ |
Se@N-MCPs | 54 | 520 (4th) | 460 | 500 | 1 A/g | [ |
VSeG | 52.5 | 410 | 370 | 800 | 2 A/g | [ |
iPANI@NSHPC/Se | 54 | 630 | 617 | 200 | 0.2 C | [ |
Se/HDHPC | 56 | 619 | 400 | 500 | 0.5 C | [ |
Se@MCNFs | 64 | 590 | 490 | 300 | 0.5 A/g | [ |
Se@CNFs-CNT | 60 | 580 | 550 | 80 | 0.05 A/g | [ |
Material | Mass fraction of Se/% | Initial capacity/(mAh∙g–1) | Capacity retention/(mAh∙g–1) | Cycle | Rate | Ref. |
---|---|---|---|---|---|---|
Jackfruit-Se/C composite | 54 | 616 | 399 | 600 | 2 C | [ |
Se@NCAs | 47 | 599 | 407 | 800 | 0.5 A/g | [ |
Se-R800A | 66.7 | 300 | 300 | 500 | 2 A/g | [ |
Fe3C@C-Se | 72.6 | 457 (3rd) | 375 | 300 | 2 C | [ |
Se@N-HRMC | 72.6 | 500 (3rd) | 450 | 500 | 0.5 C | [ |
Se@N-MCPs | 54 | 520 (4th) | 460 | 500 | 1 A/g | [ |
VSeG | 52.5 | 410 | 370 | 800 | 2 A/g | [ |
iPANI@NSHPC/Se | 54 | 630 | 617 | 200 | 0.2 C | [ |
Se/HDHPC | 56 | 619 | 400 | 500 | 0.5 C | [ |
Se@MCNFs | 64 | 590 | 490 | 300 | 0.5 A/g | [ |
Se@CNFs-CNT | 60 | 580 | 550 | 80 | 0.05 A/g | [ |
[1] |
Khalil, H. B.; Zaidi, S. J. H. Renew. Sust. Energ. Rev. 2014, 31,194.
|
[2] |
Vlachos, D. G.; Caratzoulas, S. Chem. Eng. Sci. 2010, 65,18.
doi: 10.1016/j.ces.2009.09.019 |
[3] |
Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2017, 16,16.
doi: 10.1038/nmat4834 |
[4] |
Jacobson, M. Z. Energ. Environ. Sci. 2008, 650,723.
|
[5] |
Bisio, G.; Rubatto, G.; Martini, R. Energy 2000, 25,1047.
doi: 10.1016/S0360-5442(00)00037-2 |
[6] |
Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Prog. Nat. Sci. 2009, 19,291.
doi: 10.1016/j.pnsc.2008.07.014 |
[7] |
Ibrahim, H.; Ilinca, A.; Perron, J. Renew. Sust. Energ. Rev. 2008, 12,1221.
doi: 10.1016/j.rser.2007.01.023 |
[8] |
Divya, K. C.; Stergaard, J. Electr. Pow. Syst. Res. 2009, 79,511.
doi: 10.1016/j.epsr.2008.09.017 |
[9] |
Xing, Z. Y.; Wang, S.; Yu, A. P.; Chen, W. Z. Nano Energy 2018, 50,229.
doi: 10.1016/j.nanoen.2018.05.049 |
[10] |
Su, D.; Zou, L.; Han, D. D.; Lv, X. L.; Zou, X. Electr. Meas. Instrum. 2017, 54,83.
|
( 苏荻, 邹黎, 韩冬冬, 吕晓丽, 邹雪, 电测与仪表, 2017, 54,83.)
|
|
[11] |
Wang, H.; Jiang, Y.; Manthiram, A. Energy Storage Mater. 2018, 18,2405.
|
[12] |
Poborchii, V. V.; Kolobov, A. V. Chem. Phys. Lett. 1997, 280,17.
doi: 10.1016/S0009-2614(97)01087-7 |
[13] |
Li, Q. Q.; Liu, H. G.; Yao, Z. P.; Cheng, J. P.; Li, T. H.; Li, Y.; Wolverton, C.; Wu, J. S.; Dravid, V. P. ACS Nano 2016, 10(9),8788.
|
[14] |
Xu, Q. J.; Yang, T. T.; Gao, W.; Zhan, R. M.; Zhang, Y. Q.; Bao, S. J.; Li, X. Y.; Chen, Y. M.; Xu, M. W. J. Power Sources 2019, 443,227245.
doi: 10.1016/j.jpowsour.2019.227245 |
[15] |
Deng, Y. R.; Gong, L. L.; Pan, Y. L.; Cheng, X. D.; Zhang, H. P. Nanoscale 2019, 11,11671.
doi: 10.1039/C9NR00701F |
[16] |
Luo, W.; Lin, C. F.; Zhao, O.; Noked, M.; Zhang, Y.; Rubloff, G. W.; Hu, L. B. Adv. Energy Materials. 2017, 7,1601526.
doi: 10.1002/aenm.v7.2 |
[17] |
Zeng, L. C.; Zeng, W. C.; Jiang, Y.; Wei, X.; Li, W. H.; Yang, C. L.; Zhu, Y. W.; Yu, Y. Advanced Energy Mater. 2015, 5,1401377.
doi: 10.1002/aenm.201401377 |
[18] |
Xing, Z. Y.; Tan, G. Q.; Yuan, Y. F.; Wang, B.; Ma, L.; Xie, J.; Li, Z. S.; Wu, T. P.; Ren, Y.; Shahbazian-Yassar, R.; Lu, J.; Ji, X. L.; Chen, Z. W. Adv. Mater. 2020, 32,2002403.
doi: 10.1002/adma.v32.31 |
[19] |
Xing, Z. Y.; Li, G. R.; Serubbabel, S.; Chen, Z. W. Nano Energy 2018, 54,1.
doi: 10.1016/j.nanoen.2018.09.034 |
[20] |
Zeng, L. C.; Li, W. H.; Jiang, Y.; Yu, Y. Rare Metals 2017, 36,339.
doi: 10.1007/s12598-017-0891-z |
[21] |
Xing, Z. Y.; Deng, Y. P.; Serubbabel, S.; Tan, G. Q.; Li, A. J.; Li, J. D.; Niu, Y.; Li, N.; Su, D.; Lu, J.; Chen, Z. W. Nano Energy 2019, 65,104051.
doi: 10.1016/j.nanoen.2019.104051 |
[22] |
Xing, Z. Y.; Wang, B.; Halsted, J. K.; Subashchandrabose, R.; Stickleb, W. F.; Ji, X. L. Chem. Commun. 2015, 51,1969.
doi: 10.1039/C4CC08977D |
[23] |
Xing, Z. Y.; Gao, N. S. J.; Qi, Y. T.; Ji, X. L.; Liu, H. Carbon 2017, 115,271.
doi: 10.1016/j.carbon.2017.01.014 |
[24] |
Xing, Z. Y.; Qi, Y. T.; Tian, Z. Q.; Xu, J.; Yuan, Y. F.; Bommier, C.; Lu, J.; Tong, W.; Jiang, D,; Ji, X. L. Chem. Mater. 2017, 29,7288.
doi: 10.1021/acs.chemmater.7b01937 |
[25] |
Xing, Z. Y.; Luo, X. Y.; Qi, Y. T.; Stickle, W. F.; Amine, K.; Lu, J.; Ji, X. L. ChemNanoMat 2016, 2,692.
doi: 10.1002/cnma.201600112 |
[26] |
Yuan, B. B.; Sun, X. Z.; Zeng, L. C.; Yu, Y.; Wang, Q. S. Small 2018, 14,1703252.
doi: 10.1002/smll.v14.9 |
[27] |
Yang, X. M.; Wang, H. K.; Yu, D. Y. W.; Rogach, A. L. Adv. Funct. Mater. 2018, 28,1706609.
doi: 10.1002/adfm.v28.8 |
[28] |
Ding, J.; Zhou, H.; Zhang, H. L.; Stephenson, T.; Li, Z.; Karpuzov, D.; Mitlin, D. Energ. Environ. Sci. 2017, 10,153.
doi: 10.1039/C6EE02274J |
[29] |
Guo, B. R.; Mi, H. W.; Zhang, P. X.; Ren, X. Z.; Li, Y. L. Nanoscale Res. Lett. 2019, 14,30.
doi: 10.1186/s11671-019-2861-x |
[30] |
Yang, X. M.; Wang, J. K.; Wang, S.; Wang, H. K.; Tomanec, O.; Zhi, C. Y.; Zboril, R.; Wu, Y. W.; Rogach, A. ACS Nano 2018, 12,7397.
doi: 10.1021/acsnano.8b04114 |
[31] |
Wang, H.; Jiang, Y.; Manthiram, A. Adv. Energy Mater. 2018, 8,1.
|
[32] |
Ding, J.; Zhou, H.; Zhang, H. L.; Tong, L. Y.; Mitlin, D. Adv. Energy Mater. 2017, 1701918,1.
|
[33] |
Zhang, F.; Xiong, P.; Guo, X.; Zhang, J. Q.; Yang, W.; Wu, W. J.; Liu, H.; Wang, G. X. Energy Storage Mater. 2019, 19,251.
|
[34] |
Xu, Q. J.; Liu, T.; Hu, L. Y.; Dai, C. L.; Zhang, Y. Q.; Li, Y.; Liu, D. Y.; Xu, M. W. ACS Appl. Mater. Inter. 2017, 9,41339.
doi: 10.1021/acsami.7b14380 |
[35] |
Xu, Q. J.; Liu, H.; Du, W. Y.; Zhan, L. Y.; Hu, L. Y.; Bao, S. J.; Dai, C. L.; Liu, F.; Xu, M. W. Electrochim. Acta 2018, 276,21.
doi: 10.1016/j.electacta.2018.04.164 |
[36] |
Li, S. Q.; Yang, H.; Xu, R.; Gong, Y.; Gu, L.; Yu, Y. Mater. Chem. Front. 2018, 2,1574.
doi: 10.1039/C8QM00177D |
[37] |
Dong, W.; Chen, H.; Xia, H.; Yu, W.; Song, J.; Wu, S.; Deng, Z.; Hu, Z. Y.; Hasan, T.; Li, Y.; Wang, H.; Chen, L.; Su, B. L. J. Mater. Chem. A 2018, 6,22790.
doi: 10.1039/C8TA07662F |
[38] |
Zhao, X. S.; Yin, L. C.; Zhang, T.; Zhang, M. Nano Energy 2018, 49,137.
doi: 10.1016/j.nanoen.2018.04.045 |
[39] |
Zeng, L. C.; Wei, X.; Wang, J. Q.; Jiang, Y. J. Power Sources 2015, 281,461.
doi: 10.1016/j.jpowsour.2015.02.029 |
[1] | Tongxin Li, Donglin Li, Qingbo Zhang, Jianhang Gao, Xiangze Kong, Xiaoyong Fan, Lei Gou. Preparation and Electrochemical Performance of Macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material [J]. Acta Chimica Sinica, 2021, 79(5): 678-684. |
[2] | Yanli Li, Dandan Yu, Sen Lin, Dongfei Sun, Ziqiang Lei. Preparation of α-MnO2 Nanorods/Porous Carbon Cathode for Aqueous Zinc-ion Batteries [J]. Acta Chimica Sinica, 2021, 79(2): 200-207. |
[3] | Lu Zhang, Wenfeng Wang, Hongming Zhang, Shumin Han, Limin Wang. Research Progress and Challenge of Aqueous Zinc Ion Battery [J]. Acta Chimica Sinica, 2021, 79(2): 158-175. |
[4] | Tang Gong-ao, Mao Kun, Zhang Jing, Lyu Pin, Cheng Xueyi, Wu Qiang, Yang Lijun, Wang Xizhang, Hu Zheng. Hierarchical Nitrogen-doped Carbon Nanocages as High-rate Long-life Cathode Material for Rechargeable Magnesium Batteries [J]. Acta Chimica Sinica, 2020, 78(5): 444-450. |
[5] | Liu Jiuding, Zhang Yudong, Liu Junxiang, Li Jinhan, Qiu Xiaoguang, Cheng Fangyi. In-situ Li3PO4 Coating of Li-Rich Mn-Based Cathode Materials for Lithium-ion Batteries [J]. Acta Chimica Sinica, 2020, 78(12): 1426-1433. |
[6] | Ren Xuqiang, Li Donglin, Zhao Zhenzhen, Chen Guangqi, Zhao Kun, Kong Xiangze, Li Tongxin. Dual Effect of Aluminum Doping and Lithium Tungstate Coating on the Surface Improves the Cycling Stability of Lithium-rich Manganese-based Cathode Materials [J]. Acta Chimica Sinica, 2020, 78(11): 1268-1274. |
[7] | Song Xuexi, Li Jicheng, Li Zhaohui, Li Xifei, Ding Yanhuai, Xiao Qizhen, Lei Gangtie. Effect of K-Doping on the Sodium-storage Performance of Sodium Vanadate Nanoplates [J]. Acta Chim. Sinica, 2019, 77(7): 625-633. |
[8] | Li Zhao, Wang Zhong, Ban Liqin, Wang Jiantao, Lu Shigang. Recent Advances on Surface Modification of Li- and Mn-Rich Cathode Materials [J]. Acta Chimica Sinica, 2019, 77(11): 1115-1128. |
[9] | Wang Ling, Yang Guorui, Wang Jianan, Wang Silan, Peng Shengjie, Yan Wei. Research Progress on Electrospun Materials for Sodium-Ion Batteries [J]. Acta Chim. Sinica, 2018, 76(9): 666-680. |
[10] | Chang Shilei, Liang Feng, Yao Yaochun, Ma Wenhui, Yang Bin, Dai Yongnian. Research Progress of Metallic Carbon Dioxide Batteries [J]. Acta Chim. Sinica, 2018, 76(7): 515-525. |
[11] | Zheng Zhuo, Wu Zhenguo, Xiang Wei, Guo Xiaodong. Preparation and Electrochemical Performance of High Rate Spherical Layered LiNi0.5Co0.2Mn0.3O2 Cathode Material for Lithium-Ion Batteries [J]. Acta Chim. Sinica, 2017, 75(5): 501-507. |
[12] | Xiang Xingde, Lu Yanying, Chen Jun. Advance and Prospect of Functional Materials for Sodium Ion Batteries [J]. Acta Chim. Sinica, 2017, 75(2): 154-162. |
[13] | Zhang Guobin, Xiong Tengfei, Pan Xuelei, Yan Mengyu, Han Chunhua, Mai Liqiang. In Situ Observation and Mechanism Investigation of Lattice Breathing in Vanadium Oxide Cathode [J]. Acta Chim. Sinica, 2016, 74(7): 582-586. |
[14] | Feng Rui, Wang Liwei, Lyu Zhiyang, Wu Qiang, Yang Lijun, Wang Xizhang, Hu Zheng. Carbon Nanocages Supported LiFePO4 Nanoparticles as High-Performance Cathode for Lithium Ion Batteries [J]. Acta Chimica Sinica, 2014, 72(6): 653-657. |
[15] | Dai Liqin, Wu Feng, Guan Yibiao, Fu Kai, Jin Yi, Gao Wei, Wang Zhao, Su Yuefeng. Synthesis and Electrochemical Performance of Graphene-Li2MnSiO4 Composite [J]. Acta Chimica Sinica, 2014, 72(5): 583-589. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||