Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (2): 146-157.DOI: 10.6023/A22100442 Previous Articles Next Articles
Review
投稿日期:
2022-10-31
发布日期:
2022-12-05
通讯作者:
王殳凹
作者简介:
陈俊畅, 本科毕业于南华大学, 目前为苏州大学放射医学与防护学院博士研究生, 导师王殳凹教授, 研究方向为辐射化学合成功能材料及核技术应用研究. |
张明星, 本科毕业于兰州大学, 2021年于中国科学院大学获博士学位, 目前为苏州大学放射医学与防护学院博士后, 主要研究方向为辐射法制备功能材料. |
王殳凹教授, 苏州大学放射医学与防护学院副院长、放射医学与辐射防护国家重点实验室放射化学研究中心主任、教育部长江学者特聘教授、基金委杰出青年基金获得者. 2007年在中国科学技术大学获理学学士学位, 2012年在美国圣母大学获得博士学位, 2012~2013年在美国劳伦斯伯克利国家实验室和加州大学伯克利分校开展博士后研究. 现从事面向我国核能可持续发展及核安全重大需求的放射化学与辐射化学研究, 为我国乏燃料后处理、高放废物地质处置、核事故应急等重要任务提供了新思路. 近五年作为通讯作者在Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、CCS Chemistry等国际期刊上发表论文200余篇, 总引用11000余次. 曾获中国青年五四奖章和中国青年科技奖等荣誉. |
基金资助:
Junchang Chen, Mingxing Zhang, Shuao Wang()
Received:
2022-10-31
Published:
2022-12-05
Contact:
Shuao Wang
Supported by:
Share
Junchang Chen, Mingxing Zhang, Shuao Wang. Research Progress of Synthesis Methods for Crystalline Porous Materials[J]. Acta Chimica Sinica, 2023, 81(2): 146-157.
[1] |
Davis, M. E. Nature. 2002, 417, 813.
doi: 10.1038/nature00785 |
[2] |
Kitagawa, S. Acc. Chem. Res. 2017, 50, 514.
doi: 10.1021/acs.accounts.6b00500 |
[3] |
Slater, A. G.; Cooper, A. I. Science. 2015, 348, aaa8075.
|
[4] |
Lv, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica. 2021, 79, 869. (in Chinese)
doi: 10.6023/A21030099 |
(吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
doi: 10.6023/A21030099 |
|
[5] |
Di, J.; Li, L.; Wang, Q.; Yu, J. CCS Chem. 2021, 3, 2280.
doi: 10.31635/ccschem.020.202000457 |
[6] |
Tao, S.; Jiang, D. CCS Chem. 2021, 3, 2003.
doi: 10.31635/ccschem.020.202000491 |
[7] |
Sun, Q.; Wang, N.; Yu, J. Adv. Mater. 2021, 33, 2104442.
doi: 10.1002/adma.202104442 |
[8] |
Corma, A. Chem Rev. 1997, 97, 2373.
doi: 10.1021/cr960406n |
[9] |
Li, Y.; Yu, J. Chem. Rev. 2014, 114, 7268.
doi: 10.1021/cr500010r |
[10] |
He, L.; Yao, Q.; Sun, M.; Ma, X. Acta Chim. Sinica. 2022, 80, 180. (in Chinese)
doi: 10.6023/A21100489 |
(何磊, 么秋香, 孙鸣, 马晓迅, 化学学报, 2022, 80, 180.)
doi: 10.6023/A21100489 |
|
[11] |
Chen, L.; Sun, M.; Wang, Z.; Yang, W.; Xie, Z.; Su, B. Chem. Rev. 2020, 120, 11194.
doi: 10.1021/acs.chemrev.0c00016 |
[12] |
Li, Y.; Yu, J. Nat. Rev. Mater. 2021, 6, 1156.
doi: 10.1038/s41578-021-00347-3 |
[13] |
James, S. L. Chem. Soc. Rev. 2003, 32, 276.
doi: 10.1039/b200393g |
[14] |
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science. 2013, 341, 1230444.
doi: 10.1126/science.1230444 |
[15] |
Jiang, J.; Zhao, Y.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 3255.
doi: 10.1021/jacs.5b10666 |
[16] |
Feng, L.; Wang, K.; Lv, X.; Yan, T.; Zhou, H. Natl. Sci. Rev. 2020, 7, 1743.
doi: 10.1093/nsr/nwz170 |
[17] |
Zhang, J.; Zhou, H.; Zhou, D.; Liao, P.; Chen, X. Natl. Sci. Rev. 2018, 5, 907.
doi: 10.1093/nsr/nwx127 |
[18] |
Wang, W. Acta Chim. Sinica. 2015, 73, 461. (in Chinese)
doi: 10.6023/A1506E001 |
(王为, 化学学报, 2015, 73, 461.)
doi: 10.6023/A1506E001 |
|
[19] |
Gao, X.; Lu, W.; Wang, Y.; Song, X.; Wang, C.; Kirlikovali, K. O.; Li, P. Sci. China: Chem. 2022, 65, 2077.
doi: 10.1007/s11426-022-1333-9 |
[20] |
Lin, Z.; Cao, R. Acta Chim. Sinica. 2020, 78, 1309. (in Chinese)
doi: 10.6023/A20080359 |
(林祖金, 曹荣, 化学学报, 2020, 78, 1309.)
doi: 10.6023/A20080359 |
|
[21] |
Lin, R.; Chen, B. Chem. 2022, 8, 2114.
doi: 10.1016/j.chempr.2022.06.015 |
[22] |
Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 933.
doi: 10.1021/cr200304e |
[23] |
Li, Y.; Chen, W.; Xing, G.; Jiang, D.; Chen, L. Chem. Soc. Rev. 2020, 49, 2852.
doi: 10.1039/D0CS00199F |
[24] |
Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. Chem. Soc. Rev. 2017, 46, 3453.
doi: 10.1039/c7cs00109f pmid: 28530737 |
[25] |
Cejka, J.; van Bekkum, H.; Corma, A.; Schueth, F. Introduction to Zeolite Molecular Sieves. Ed.: Yu, J., Elsevier, Amsterdam, 2007, Chapter 3.
|
[26] |
Zhou, B.; Chen, L. Acta Chim. Sinica. 2015, 73, 487. (in Chinese)
doi: 10.6023/A15020090 |
(周宝龙, 陈龙, 化学学报, 2015, 73, 487.)
doi: 10.6023/A15020090 |
|
[27] |
Wu, Q.; Luan, H.; Xiao, F. Sci. China: Chem. 2022, 65, 1683.
doi: 10.1007/s11426-022-1307-5 |
[28] |
Sun, Y.; Zhou, H. Sci. Technol. Adv. Mater. 2015, 16, 054202.
doi: 10.1088/1468-6996/16/5/054202 |
[29] |
Yu, J.; Xu, R. Acc. Chem. Res. 2010, 43, 1195.
doi: 10.1021/ar900293m |
[30] |
Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.
doi: 10.1021/ar1000617 |
[31] |
Rabenau, A. Angew. Chem., Int. Ed. Engl. 1985, 24, 1026.
doi: 10.1002/anie.198510261 |
[32] |
Barrer, R. Trans. Soc. Chem. Ind. 1945, 64, 130.
|
[33] |
Argauer, R. J.; Olson, D. H.; Landolt, G. R. GB 1161974, 1969 [Chem. Abstr. 1983, 71, 114760].
|
[34] |
Kokotailo, G.; Chu, P.; Lawton, S.; Meier, W. Nature. 1978, 275, 119.
doi: 10.1038/275119a0 |
[35] |
LaPierre, R.; Rohrman Jr, A.; Schlenker, J.; Wood, J.; Rubin, M.; Rohrbaugh, W. Zeolites. 1985, 5, 346.
doi: 10.1016/0144-2449(85)90121-6 |
[36] |
Rubin, M. K.; Rosinski, E. J.; Plank, C. J. US 4116813, 1978 [Chem. Abstr. 1983, 90, 41175].
|
[37] |
Mentzen, B. F.; Vedrine, J. C.; Khouzami, R. C. R. Acad. Sci., Ser. II. 1987, 304, 11.
|
[38] |
Liang, J.; Li, H. Y.; Zhao, S.; Guo, W. G.; Wang, R. H.; Ying, M. L. Appl. Catal. 1990, 64, 31.
doi: 10.1016/S0166-9834(00)81551-1 |
[39] |
Song, X.; Li, Y.; Gan, L.; Wang, Z.; Yu, J.; Xu, R. Angew. Chem., Int. Ed. 2009, 48, 314.
|
[40] |
Shao, L.; Li, Y.; Yu, J.; Xu, R. Inorg. Chem. 2012, 51, 225.
doi: 10.1021/ic201515z |
[41] |
Liu, Z.; Song, X.; Li, J.; Li, Y.; Yu, J.; Xu, R. Inorg. Chem. 2012, 51, 1969.
doi: 10.1021/ic2022903 |
[42] |
Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowdert, C. Nature. 1988, 331, 698.
doi: 10.1038/331698a0 |
[43] |
Huo, Q.; Xu, R.; Li, S.; Ma, Z.; Thomas, J. M.; Jones, R. H.; Chippindale, A. M. J. Chem. Soc., Chem. Commun. 1992, 875.
|
[44] |
Livage, C.; Millange, F.; Walton, R. I.; Loiseau, T.; Simon, N.; O’Hare, D.; Férey, G. Chem. Commun. 2001, 994.
|
[45] |
Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc. 2002, 116, 1151.
doi: 10.1021/ja00082a055 |
[46] |
Yaghi, O. M.; Li, G.; Li, H. Nature. 1995, 378, 703.
doi: 10.1038/378703a0 |
[47] |
Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature. 1999, 402, 276.
doi: 10.1038/46248 |
[48] |
Huang, X.; Zhang, J.; Chen, X. Chin. Sci. Bull. 2003, 48, 1531.
|
[49] |
Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Angew. Chem., Int. Ed. 2006, 45, 1557.
doi: 10.1002/anie.200503778 |
[50] |
Zhang, J.; Zhang, Y.; Lin, J.; Chen, X. Chem. Rev. 2012, 112, 1001.
doi: 10.1021/cr200139g |
[51] |
Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2006, 103, 10186.
doi: 10.1073/pnas.0602439103 |
[52] |
Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2010, 43, 58.
doi: 10.1021/ar900116g |
[53] |
Wang, H.; Pei, X.; Kalmutzki, M. J.; Yang, J.; Yaghi, O. M. Acc. Chem. Res. 2022, 55, 707.
doi: 10.1021/acs.accounts.1c00740 |
[54] |
Chui, S. S.; Lo, S. M.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. Science. 1999, 283, 1148.
pmid: 10024237 |
[55] |
Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science. 2002, 295, 469.
pmid: 11799235 |
[56] |
Férey, G.; Latroche, M.; Serre, C.; Millange, F.; Loiseau, T.; Percheron-Guégan, A. Chem. Commun. 2003, 2976.
|
[57] |
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Science. 2005, 309, 2040.
doi: 10.1126/science.1116275 pmid: 16179475 |
[58] |
Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
doi: 10.1021/ja8057953 |
[59] |
Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science. 2005, 310, 1166.
doi: 10.1126/science.1120411 |
[60] |
Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 4570.
doi: 10.1021/ja8096256 pmid: 19281246 |
[61] |
Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. J. Am. Chem. Soc. 2011, 133, 11478.
doi: 10.1021/ja204728y pmid: 21721558 |
[62] |
Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524.
doi: 10.1021/ja308278w pmid: 23153356 |
[63] |
El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science. 2007, 316, 268.
pmid: 17431178 |
[64] |
Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Nat. Commun. 2014, 5, 4503.
doi: 10.1038/ncomms5503 |
[65] |
Zeng, Y.; Zou, R.; Luo, Z.; Zhang, H.; Yao, X.; Ma, X.; Zou, R.; Zhao, Y. J. Am. Chem. Soc. 2015, 137, 1020.
doi: 10.1021/ja510926w |
[66] |
Takacs, L. J. Therm. Anal. Calorim. 2007, 90, 81.
doi: 10.1007/s10973-007-8479-8 |
[67] |
James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Chem. Soc. Rev. 2012, 41, 413.
doi: 10.1039/C1CS15171A |
[68] |
Ren, L.; Wu, Q.; Yang, C.; Zhu, L.; Li, C.; Zhang, P.; Zhang, H.; Meng, X.; Xiao, F. J. Am. Chem. Soc. 2012, 134, 15173.
doi: 10.1021/ja3044954 |
[69] |
Meng, X.; Xiao, F. Chem. Rev. 2014, 114, 1521.
doi: 10.1021/cr4001513 |
[70] |
Jin, Y.; Sun, Q.; Qi, G.; Yang, C.; Xu, J.; Chen, F.; Meng, X.; Deng, F.; Xiao, F. Angew. Chem., Int. Ed. 2013, 52, 9172.
doi: 10.1002/anie.201302672 |
[71] |
Wu, Q.; Wang, X.; Qi, G.; Guo, Q.; Pan, S.; Meng, X.; Xu, J.; Deng, F.; Fan, F.; Feng, Z.; Li, C.; Maurer, S.; Muller, U.; Xiao, F. J. Am. Chem. Soc. 2014, 136, 4019.
doi: 10.1021/ja500098j |
[72] |
Meng, X.; Wu, Q.; Chen, F.; Xiao, F. Sci. China: Chem. 2015, 58, 6.
doi: 10.1007/s11426-014-5252-2 |
[73] |
Pichon, A.; Lazuen-Garay, A.; James, S. L. CrystEngComm. 2006, 8, 211.
doi: 10.1039/b513750k |
[74] |
Pichon, A.; James, S. L. CrystEngComm. 2008, 10, 1839.
doi: 10.1039/b810857a |
[75] |
Yuan, W.; Garay, A. L.; Pichon, A.; Clowes, R.; Wood, C. D.; Cooper, A. I.; James, S. L. CrystEngComm. 2010, 12, 4063.
doi: 10.1039/c0ce00486c |
[76] |
Užarević, K.; Wang, T. C.; Moon, S.-Y.; Fidelli, A. M.; Hupp, J. T.; Farha, O. K.; Friščić, T. Chem. Commun. 2016, 52, 2133.
doi: 10.1039/C5CC08972G |
[77] |
Ayoub, G.; Karadeniz, B.; Howarth, A. J.; Farha, O. K.; Đilović, I.; Germann, L. S.; Dinnebier, R. E.; Užarević, K.; Friščić, T. Chem. Mater. 2019, 31, 5494.
doi: 10.1021/acs.chemmater.9b01068 |
[78] |
Beldon, P. J.; Fábián, L.; Stein, R. S.; Thirumurugan, A.; Cheetham, A. K.; Friščić, T. Angew. Chem., Int. Ed. 2010, 49, 9640.
doi: 10.1002/anie.201005547 |
[79] |
Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 5328.
doi: 10.1021/ja4017842 |
[80] |
Peng, Y.; Xu, G.; Hu, Z.; Cheng, Y.; Chi, C.; Yuan, D.; Cheng, H.; Zhao, D. ACS Appl. Mater. Interfaces. 2016, 8, 18505.
doi: 10.1021/acsami.6b06189 |
[81] |
Karak, S.; Kandambeth, S.; Biswal, B. P.; Sasmal, H. S.; Kumar, S.; Pachfule, P.; Banerjee, R. J. Am. Chem. Soc. 2017, 139, 1856.
doi: 10.1021/jacs.6b08815 |
[82] |
Pal, P.; Das, J. K.; Das, N.; Bandyopadhyay, S. Ultrason. Sonochem. 2013, 20, 314.
doi: 10.1016/j.ultsonch.2012.07.012 |
[83] |
Huang, L.; Qin, F.; Huang, Z.; Zhuang, Y.; Ma, J.; Xu, H.; Shen, W. Ind. Eng. Chem. Res. 2016, 55, 7318.
doi: 10.1021/acs.iecr.6b01140 |
[84] |
Mu, Y.; Zhang, Y.; Fan, J.; Guo, C. Ultrason. Sonochem. 2017, 38, 430.
doi: 10.1016/j.ultsonch.2017.03.043 |
[85] |
Qiu, L.; Li, Z.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Chem. Commun. 2008, 3642.
|
[86] |
Son, W.; Kim, J.; Kim, J.; Ahn, W. Chem. Commun. 2008, 6336.
|
[87] |
Li, Z.; Qiu, L.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.; Jiang, X. Mater. Lett. 2009, 63, 78.
doi: 10.1016/j.matlet.2008.09.010 |
[88] |
Haque, E.; Khan, N. A.; Park, J. H.; Jhung, S. H. Chem. - Eur. J. 2010, 16, 1046.
doi: 10.1002/chem.200902382 |
[89] |
Cho, H.; Kim, J.; Kim, S.; Ahn, W. Microporous Mesoporous Mater. 2013, 169, 180.
doi: 10.1016/j.micromeso.2012.11.012 |
[90] |
Kim, J.; Yang, S.; Choi, S. B.; Sim, J.; Kim, J.; Ahn, W. J. Mater. Chem. 2011, 21, 3070.
doi: 10.1039/c0jm03318a |
[91] |
Yang, S.; Kim, J.; Cho, H.; Kim, S.; Ahn, W. RSC Adv. 2012, 2, 10179.
doi: 10.1039/c2ra21531d |
[92] |
Zhao, W.; Yan, P.; Yang, H.; Bahri, M.; James, A. M.; Chen, H.; Liu, L.; Li, B.; Pang, Z.; Clowes, R.; Browning, N. D.; Ward, J. W.; Wu, Y.; Cooper, A. I. Nat. Synth. 2022, 1, 87.
doi: 10.1038/s44160-021-00005-0 |
[93] |
Chu, P.; Dwyer, F. G.; Vartuli, J. C. US 4778666, 1988 [Chem. Abstr. 1988, 110, 10669]
|
[94] |
Zeng, X.; Hu, X.; Song, H.; Xia, G.; Shen, Z.; Yu, R.; Moskovits, M. Microporous Mesoporous Mater. 2021, 323, 111262.
doi: 10.1016/j.micromeso.2021.111262 |
[95] |
Xu, R.; Pan, W. Chemistry-Zeolites and Porous Materials. Ed.: Xu, R., Science Press, Beijing, 2004, Chapter 4. 2. (in Chinese)
|
(徐如人, 庞文琴, 分子筛与多孔材料化学, 科学出版社, 北京, 2004, 4.2章.)
|
|
[96] |
Stenzel, C.; Brinkmann, M.; Muller, J.; Schertlen, R.; Venot, Y.; Wiesbeck, W. J. Microw. Power Electromagn. Energy. 2001, 36, 155.
doi: 10.1080/08327823.2001.11688457 |
[97] |
Xu, Y.; Tian, Z.; Wang, S.; Hu, Y.; Wang, L.; Wang, B.; Ma, Y.; Hou, L.; Yu, J.; Lin, L. Angew. Chem., Int. Ed. 2006, 45, 3965.
doi: 10.1002/anie.200600054 |
[98] |
Cai, R.; Liu, Y.; Gu, S.; Yan, Y. J. Am. Chem. Soc. 2010, 132, 12776.
doi: 10.1021/ja101649b |
[99] |
Jhung, S.; Lee, J.; Chang, J. Bull. Korean Chem. Soc. 2005, 26, 880.
doi: 10.5012/bkcs.2005.26.6.880 |
[100] |
Choi, J.; Kim, J.; Jhung, S.; Kim, H.; Chang, J.; Chae, H. K. Bull. Korean Chem. Soc. 2006, 27, 1523.
doi: 10.5012/bkcs.2006.27.10.1523 |
[101] |
Ni, Z.; Masel, R. I. J. Am. Chem. Soc. 2006, 128, 12394.
doi: 10.1021/ja0635231 |
[102] |
Lu, C.; Liu, J.; Xiao, K.; Harris, A. T. Chem. Eng. J. 2010, 156, 465.
doi: 10.1016/j.cej.2009.10.067 |
[103] |
Seo, Y.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C.; Chang, J. Microporous Mesoporous Mater. 2009, 119, 331.
doi: 10.1016/j.micromeso.2008.10.035 |
[104] |
Park, J.; Park, S.; Jhung, S. J. Korean Chem. Soc. 2009, 53, 553.
doi: 10.5012/jkcs.2009.53.5.553 |
[105] |
Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Chem. Mater. 2009, 21, 204.
doi: 10.1021/cm802981m |
[106] |
Zhang, W.; Li, C.; Yuan, Y.; Qiu, L.; Xie, A.; Shen, Y.; Zhu, J. J. Mater. Chem. 2010, 20, 6413.
doi: 10.1039/c0jm01392g |
[107] |
Wei, H.; Chai, S.; Hu, N.; Yang, Z.; Wei, L.; Wang, L. Chem. Commun. 2015, 51, 12178.
doi: 10.1039/C5CC04680G |
[108] |
Kuehl, V. A.; Yin, J.; Duong, P. H.; Mastorovich, B.; Newell, B.; Li-Oakey, K. D.; Parkinson, B. A.; Hoberg, J. O. J. Am. Chem. Soc. 2018, 140, 18200.
doi: 10.1021/jacs.8b11482 |
[109] |
Zhu, Y.; Wan, S.; Jin, Y.; Zhang, W. J. Am. Chem. Soc. 2015, 137, 13772.
doi: 10.1021/jacs.5b09487 |
[110] |
Mueller, U.; Puetter, H.; Hesse, M.; Wessel, H. WO 049892, 2005 [Chem. Abstr. 2005, 143, 15348]
|
[111] |
Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. J. Mater. Chem. 2006, 16, 626.
doi: 10.1039/B511962F |
[112] |
Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Chem. Mater. 2009, 21, 2580.
doi: 10.1021/cm900069f |
[113] |
Van Assche, T. R.; Desmet, G.; Ameloot, R.; De Vos, D. E.; Terryn, H.; Denayer, J. F. Microporous Mesoporous Mater. 2012, 158, 209.
doi: 10.1016/j.micromeso.2012.03.029 |
[114] |
Czaja, A. U.; Trukhan, N.; Müller, U. Chem. Soc. Rev. 2009, 38, 1284.
doi: 10.1039/b804680h |
[115] |
Zhang, Q.; Wu, Z.; Lv, Y.; Li, Y.; Zhao, Y.; Zhang, R.; Xiao, Y.; Shi, X.; Zhang, D.; Hua, R.; Yao, J.; Guo, J.; Huang, R.; Cui, Y.; Kang, Z.; Goswami, S.; Robison, L.; Song, K.; Li, X.; Han, Y.; Chi, L.; Farha, O. K.; Lu, G. Angew. Chem., Int. Ed. 2019, 58, 1123.
doi: 10.1002/anie.201808465 pmid: 30474228 |
[116] |
Martinez Joaristi, A.; Juan-Alcañiz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Cryst. Growth Des. 2012, 12, 3489.
doi: 10.1021/cg300552w |
[117] |
Kumar, R. S.; Kumar, S. S.; Kulandainathan, M. A. Microporous Mesoporous Mater. 2013, 168, 57.
doi: 10.1016/j.micromeso.2012.09.028 |
[118] |
Stassen, I.; Styles, M.; Van Assche, T.; Campagnol, N.; Fransaer, J.; Denayer, J.; Tan, J.; Falcaro, P.; De Vos, D.; Ameloot, R. Chem. Mater. 2015, 27, 1801.
doi: 10.1021/cm504806p |
[119] |
Rotter, J.; Weinberger, S.; Kampmann, J.; Sick, T.; Shalom, M.; Bein, T.; Medina, D. Chem. Mater. 2019, 31, 10008.
doi: 10.1021/acs.chemmater.9b02286 |
[120] |
Wang, L.; Xu, C.; Zhang, W.; Zhang, Q.; Zhao, M.; Zeng, C.; Jiang, Q.; Gu, C.; Ma, Y. J. Am. Chem. Soc. 2022, 144, 8961.
doi: 10.1021/jacs.1c13072 |
[121] |
Aguilera-Sigalat, J.; Fox-Charles, A.; Bradshaw, D. Chem. Commun. 2014, 50, 15453.
doi: 10.1039/C4CC07882A |
[122] |
Feng, G.; Cheng, P.; Yan, W.; Boronat, M.; Li, X.; Su, J. H.; Wang, J.; Li, Y.; Corma, A.; Xu, R.; Yu, J. Science. 2016, 351, 1188.
doi: 10.1126/science.aaf1559 |
[123] |
Kim, S.; Lim, H.; Lee, J.; Choi, H. C. Langmuir. 2018, 34, 8731.
doi: 10.1021/acs.langmuir.8b00951 |
[124] |
Kim, S.; Choi, H. C. Commun. Chem. 2019, 2, 60.
doi: 10.1038/s42004-019-0162-z |
[125] |
Zhang, M.; Chen, J.; Zhang, S.; Zhou, X.; He, L.; Sheridan, M. V.; Yuan, M.; Zhang, M.; Chen, L.; Dai, X.; Ma, F.; Wang, J.; Hu, J.; Wu, G.; Kong, X.; Zhou, R.; Albrecht-Schmitt, T. E.; Chai, Z.; Wang, S. J. Am. Chem. Soc. 2020, 142, 9169.
doi: 10.1021/jacs.0c03941 |
[126] |
Chen, J.; Zhang, M.; Shu, J.; Yuan, M.; Yan, W.; Bai, P.; He, L.; Shen, N.; Gong, S.; Zhang, D.; Li, J.; Hu, J.; Li, R.; Wu, G.; Chai, Z.; Yu, J.; Wang, S. Angew. Chem., Int. Ed. 2021, 60, 14858.
doi: 10.1002/anie.202103766 |
[127] |
Chen, J.; Zhang, M.; Zhang, S.; Cao, K.; Mao, X.; Zhang, M.; He, L.; Dong, X.; Shu, J.; Dong, H.; Zhai, F.; Shen, R.; Yuan, M.; Zhao, X.; Wu, G.; Chai, Z.; Wang, S. Angew. Chem., Int. Ed. 2022, e202212532.
|
[128] |
Chen, X.; Qiu, M.; Li, S.; Yang, C.; Shi, L.; Zhou, S.; Yu, G.; Ge, L.; Yu, X.; Liu, Z.; Sun, N.; Zhang, K.; Wang, H.; Wang, M.; Zhong, L.; Sun, Y. Angew. Chem., Int. Ed. 2020, 59, 11325.
doi: 10.1002/anie.202002886 |
[129] |
Sun, C.; Liu, Z.; Wang, S.; Pang, H.; Bai, R.; Wang, Q.; Chen, W.; Zheng, A.; Yan, W.; Yu, J. CCS Chem. 2021, 3, 189.
doi: 10.31635/ccschem.020.202000558 |
[130] |
Garzón-Tovar, L.; Rodríguez-Hermida, S.; Imaz, I.; Maspoch, D. J. Am. Chem. Soc. 2017, 139, 897.
doi: 10.1021/jacs.6b11240 pmid: 28045517 |
[131] |
Jiang, X.; Zeng, X.; He, J.; Xu, F.; Deng, P.; Jia, J.; Jiang, X.; Hou, X.; Long, Z. Chem. Commun. 2019, 55, 12192.
doi: 10.1039/C9CC06795G |
[132] |
He, J.; Jiang, X.; Xu, F.; Li, C.; Long, Z.; Chen, H.; Hou, X. Angew. Chem., Int. Ed. 2021, 60, 9984.
doi: 10.1002/anie.202102051 |
[133] |
Huang, K.; Chi, H.; Kao, P.; Huang, F.; Jian, Q.-M.; Cheng, I.; Lee, W.; Hsu, C.; Kang, D. ACS Appl. Mater. Interfaces. 2018, 10, 900.
doi: 10.1021/acsami.7b16410 |
[134] |
Zhou, Y.; Yan, P.; Zhang, S.; Zhang, Y.; Chang, H.; Zheng, X.; Jiang, J.; Xu, Q. Fundam. Res. 2021, 2, 674.
doi: 10.1016/j.fmre.2021.12.001 |
[135] |
Peng, L.; Guo, Q.; Song, C.; Ghosh, S.; Xu, H.; Wang, L.; Hu, D.; Shi, L.; Zhao, L.; Li, Q.; Sakurai, T.; Yan, H.; Seki, S.; Liu, Y.; Wei, D. Nat. Commun. 2021, 12, 5077.
doi: 10.1038/s41467-021-24842-x pmid: 34426571 |
[136] |
Wang, Z.; Zhu, Q.; Wang, J.; Jin, F.; Zhang, P.; Yan, D.; Cheng, P.; Chen, Y.; Zhang, Z. Sci. China: Chem. 2022, 65, 2144.
doi: 10.1007/s11426-022-1391-0 |
[137] |
Zhang, P.; Wang, Z.; Wang, S.; Wang, J.; Liu, J.; Wang, T.; Chen, Y.; Cheng, P.; Zhang, Z. Angew. Chem., Int. Ed. 2022, e202213247.
|
[1] | Jianchuan Liu, Cuiyan Li, Yaozu Liu, Yujie Wang, Qianrong Fang. Highly-Stable Two-Dimensional Bicarbazole-based sp2-Carbon-conjugated Covalent Organic Framework for Efficient Electrocatalytic Oxygen Reduction★ [J]. Acta Chimica Sinica, 2023, 81(8): 884-890. |
[2] | Bo Sun, Wenwen Ju, Tao Wang, Xiaojun Sun, Ting Zhao, Xiaomei Lu, Feng Lu, Quli Fan. Preparation of Highly-dispersed Conjugated Polymer-Metal Organic Framework Nanocubes for Antitumor Application [J]. Acta Chimica Sinica, 2023, 81(7): 757-762. |
[3] | Xiaojuan Li, Ziyu Ye, Shuhan Xie, Yongjing Wang, Yonghao Wang, Yuancai Lv, Chunxiang Lin. Study on Performance and Mechanism of Phenol Degradation through Peroxymonosulfate Activation by Nitrogen/Chlorine Co-doped Porous Carbon Materials [J]. Acta Chimica Sinica, 2022, 80(9): 1238-1249. |
[4] | Xu Yan, Hemi Qu, Ye Chang, Xuexin Duan. Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection [J]. Acta Chimica Sinica, 2022, 80(8): 1183-1202. |
[5] | Linan Cao, Min Wei. Recent Progress of Electric Conductive Metal-Organic Frameworks Thin Film [J]. Acta Chimica Sinica, 2022, 80(7): 1042-1056. |
[6] | Fang Liu, Tingting Pan, Xiurong Ren, Weiren Bao, Jiancheng Wang, Jiangliang Hu. Research on Preparation and Benzene Adsorption Performance of HCDs@MIL-100(Fe) Adsorbents [J]. Acta Chimica Sinica, 2022, 80(7): 879-887. |
[7] | Shihui Wang, Xiaoyu Xue, Min Cheng, Shaochen Chen, Chong Liu, Li Zhou, Kexin Bi, Xu Ji. High-Throughput Computational Screening of Metal-Organic Frameworks for CH4/H2 Separation by Synergizing Machine Learning and Molecular Simulation [J]. Acta Chimica Sinica, 2022, 80(5): 614-624. |
[8] | Rong Zhang, Jiangping Liu, Ziyi Zhu, Shumei Chen, Fei Wang, Jian Zhang. Synthesis, Structure and Characterization of Two Ferrocene Functionalized Cadmium Metal Organic Frameworks※ [J]. Acta Chimica Sinica, 2022, 80(3): 249-254. |
[9] | Ruilin Haotian, Ziyu Zhu, Yanhui Cai, Wei Wang, Zhen Wang, Axin Liang, Aiqin Luo. Application of Covalent Organic Framework-Based Electrochemical Biosensors in Biological Sample Detection [J]. Acta Chimica Sinica, 2022, 80(11): 1524-1535. |
[10] | Xiaohan Yu, Wei Huang, Yanguang Li. Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks [J]. Acta Chimica Sinica, 2022, 80(11): 1494-1506. |
[11] | Zitao Wang, Yaozu Liu, Yujie Wang, Qianrong Fang. A New Covalent Organic Framework Modified with Sulfonic Acid for CO2 Uptake and Selective Dye Adsorption [J]. Acta Chimica Sinica, 2022, 80(1): 37-43. |
[12] | Xusheng Wang, Xu Yang, Chunhui Chen, Hongfang Li, Yuanbiao Huang, Rong Cao. Graphene Quantum Dots Supported on Fe-based Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction※ [J]. Acta Chimica Sinica, 2022, 80(1): 22-28. |
[13] | Yan-Wu Zhao, Xing Li, Fu-Qiang Zhang, Xiang Zhang. Precise Control of the Dimension of Homochiral Metal-Organic Frameworks (MOFs) and Their Luminescence Properties [J]. Acta Chimica Sinica, 2021, 79(11): 1409-1414. |
[14] | Huan Liu, Li Li, Ping Li, Guangzhi Zhang, Xun Xu, Hao Zhang, Lingfang Qiu, Hui Qi, Shuwang Duo. In-situ Construction of 2D/3D ZnIn2S4/TiO2 with Enhanced Photocatalytic Performance [J]. Acta Chimica Sinica, 2021, 79(10): 1293-1301. |
[15] | Sun Lian, Wang Honglei, Yu Jinshan, Zhou Xingui. Recent Progress on Proton-Conductive Metal-Organic Frameworks and Their Proton Exchange Membranes [J]. Acta Chimica Sinica, 2020, 78(9): 888-900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||