Chin. J. Org. Chem. ›› 2015, Vol. 35 ›› Issue (7): 1520-1525.DOI: 10.6023/cjoc201501013 Previous Articles     Next Articles

Notes

新型羟基功能化离子液体的合成及在Knoevenagel缩合反应中的应用

刘玉婷a, 李戎b, 邢彦军a,b   

  1. a 东华大学化学化工与生物工程学院 生态纺织教育部重点实验室 上海 201620;
    b 国家染整技术工程研究中心 上海 201620
  • 收稿日期:2015-01-13 修回日期:2015-03-19 出版日期:2015-07-25 发布日期:2015-03-24
  • 通讯作者: 邢彦军 E-mail:yjxing@dhu.edu.cn
  • 基金资助:

    国家科学技术部专项资金(No. 2012BAK30B03); 中央高校基本科研业务费专项资金(Nos. 2232013A3-05, CUSF-DH-D2013048)资助项目.

Synthesis of Novel Hydroxyl-Functionalized Ionic Liquids andApplication in Knoevenagel Condensation

Liu Yutinga, Li Rongb, Xing Yanjuna,b   

  1. a Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Chemistry ChemicalEngineering & Bio-engineering Institute, Donghua University, Shanghai 201620;
    b National Engineering Research Center for Dyeing & Finishing of Textiles, Shanghai 201620
  • Received:2015-01-13 Revised:2015-03-19 Online:2015-07-25 Published:2015-03-24
  • Supported by:

    Project supported by the National Science and Technology Ministry (No. 2012BAK30B03) and the Fundamental Research Funds for the Central Universities (Nos. 2232013A3-05, CUSF-DH-D2013048).

Knoevenagel condensation of benzaldehyde with active methylene compounds, such as ethylcyanoacetate and 2,4-thiazolidinedione proceeded very smoothly in novel hydroxyl-functionalized ionic liquids based on 1,4-diazabicyclo- [2.2.2]octane (DABCO) under solvent-free conditions and these ionic liquids afforded the products in excellent yields [β-benzyl-α-cyanoacrylicacidethylester (≥99%) and 5-benzylidene-2,4-thiazolidinedione (92%)]. These reactions were operated simply, and the desired products were separated directly from the reaction mixture without further purification. In addition, the ionic liquids used were regenerated and recycled several times without significant loss of activity. Finally, a plausible reaction mechanism was proposed, and the relevant evidence was given.

Key words: ionic liquids, hydroxyl-functionalized, Knoevenagel condensation