文章编号: 1647934736945-1053077802
文献标识码: A
超分子有机框架对分子容器的水相增溶的梯度增强效应
收稿日期:2022-02-28
修回日期:2022-03-13
网络出版日期:2022-08-09
基金资助
国家自然科学基金(21921003)
国家自然科学基金(21890730)
国家自然科学基金(21890732)
Gradient Enhancement of Supramolecular Organic Framework for Solubilization of Hydrophobic Molecules by Two Molecular Containers in Water
Received:28 Feb. 2022
Revised:13 Mar. 2022
Online:9 Aug. 2022
Fund
National Natural Science Foundation of China(21921003)
National Natural Science Foundation of China(21890730)
National Natural Science Foundation of China(21890732)
很多功能性有机分子在水中溶解度很小, 限制了它们的实际应用. 水溶性主体的包结是提高有机分子水溶性的重要手段, 但要获得显著的增溶效果, 一般需要主体分子具有很高的浓度. 报道了一种梯度增溶新策略, 即利用一种高水溶性多孔聚合物富集另一个具有增溶作用的主体分子, 提高其局部有效浓度, 实现其增溶作用增强的目的. 为此利用一个水溶性正离子型超分子有机框架, 吸收富集负离子型杯[5]芳烃, 实现了杯[5]芳烃对C60、C70、二茂铁、1,1'-二甲二茂铁及1,1°-二溴二茂铁的增溶作用的进一步提高, 通过吸收富集开环葫芦脲, 实现了后者对紫杉醇, 多西他赛和卡巴他赛的水溶性的进一步提高.
王泽坤 , 徐子悦 , 李娟娟 , 余尚博 , 王辉 , 郭东升 , 张丹维 , 黎占亭 . 超分子有机框架对分子容器的水相增溶的梯度增强效应[J]. 有机化学, 2022 , 42(7) : 2236 -2242 . DOI: 10.6023/cjoc202202038
Ze-Kun Wang , Zi-Yue Xu , Juan-Juan Li , Shang-Bo Yu , Hui Wang , Dong-Sheng Guo , Dan-Wei Zhang , Zhan-Ting Li . Gradient Enhancement of Supramolecular Organic Framework for Solubilization of Hydrophobic Molecules by Two Molecular Containers in Water[J]. Chinese Journal of Organic Chemistry, 2022 , 42(7) : 2236 -2242 . DOI: 10.6023/cjoc202202038
Many functional organic molecules have very low water-solubility, which remarkably limits their practical applications. The inclusion of water-soluble hosts has been demonstrated as an important strategy to increase the water solubility of organic molecules. However, this strategy usually requires high concentration for the hosts to realize efficient solubilization of guest molecules. Herein a new strategy of gradient solubilization by utilizing a water-soluble porous supramolecular polymer to adsorb or enrich molecular containers to increase their efficient concentration in a confined space is reported. For this aim, a cationic water-soluble supramolecular organic framework was used to include an anionic calix[5]arene or an anionic acyclic cucurbituril. In this way, the supramolecular organic framework was revealed to exhibit significant gradient enhancement for the solubilization of the calix[5]arene host for C60, C70, ferrocene, 1,1'-dimethylferrocene and 1,1'-dibromoferrocene, and the solubilization of the acyclic cucurbituril host for paclitaxel, docetaxel and cabazitaxel.
图1 化合物T1和CB[8]组装SOF-1, 及化合物M1、CLX和ACB的结构Figure 1 Formation of SOF-1 from T1 and CB[8], and the structures of compounds T1, CB[8], M1, CLX and ACB |
图2 SOF-1 ([T1]=62.5 μmol/L)水溶液的荧光光谱(450 nm, 25 °C)随(a) CLX和(b) ACB加入的变化Figure 2 Change of the fluorescence spectra (450 mmol/L) of SOF-1 ([T1]=62.5 μmol/L) with the addition of (a) CLX and (b) ACB in water at 25 °C [Anion]: the anionic concentration of CLX and ACB, [Cation]: the cationic concentration of monomer T1 in SOF-1 |
图4 SOF-1 ([T1]=5 mmol/L)/CLX (1 mmol/L)混合水溶液及其与饱和的(a) C60或(b) C70的溶液 (25 °C)的紫外-可见吸收谱Figure 4 UV-Vis spectra of the solutions of SOF-1 ([T1]=5 mmol/L) and CLX (1 mmol/L) and their mixtures with saturated (a) C60 or (b) C70 in water at 25 °C |
图5 (a) C60、C70、二茂铁(Fc)、1,1'-二甲基二茂铁(DFc)和1,1'-二溴二茂铁(DBFc)在SOF-1 ([T1]=5.0 mmol/L)/CLX (1.0 mmol/L)体系、T1 (5.0 mmol/L)/CLX (1.0 mmol/L)体系、SOF-1 ([T1]=5.0 mmol/L)/PPSS(对羟基苯磺酸钠, 5.0 mmol/L)体系和NaCl(40 mmol/L)/CLX (1.0 mmol/L)体系中的溶解度, 以及(b)紫杉醇(PTX)、多西他赛(DTX)、卡巴他赛(CTX)在SOF-1 ([T1]=0.5/ACB (0.5 mmol/L)体系、ACB (1.0 mmol/L)体系、纯水体系中的溶解度Figure 5 (a) Solubility of C60, C70, ferrocene (Fc), 1,1'-dimethylferrocene (DMFc) and 1,1'-dibromoferrocene (DBFc) in the aqueous solutions of SOF-1 ([T1]=5.0 mmol/L)/CLX (1.0 mmol/L), T1 (5.0 mmol/L)/CLX (1.0 mmol/L), SOF-1 ([T1]=5.0 mmol/L)+PPSS (p-phenolsulfonic sodium, 5.0 mmol/L) and NaCl (40 mmol/L)/CLX (1.0 mmol/L). (b) Solubility of Paclitaxel (PTX), Docetaxel (DTX), Cabazitaxel (CTX) in SOF-1 ([T1]=0.5 mmol/L)/ACB (0.5 mmol/L), ACB (1.0 mmol/L) and water |
[1] |
(a) Brewster, M. E.; Loftsson, T. Adv. Drug Delivery Rev. 2007, 59, 645.
(b) Rao, V. M.; Stella, V. J. J. Pharm. Sci. 2003, 92, 927.
|
[2] |
(a) Hu, Y.; Qiu, C.; Qin, Y.; Xu, X.; Fan, L. Wang, J.; Jin, Z. Trend. Food Sci. Technol. 2021, 109, 398.
(b) Jambhekar, S. S.; Breen, P. Drug Delivery Today 2016, 21, 363.
(c) Qie, S.; Hao, Y.; Liu, Z.; Wang, J.; Xi, J. Acta Chim. Sin. 2020, 78, 232. (in Chinese)
( 郄淑燕, 郝莹, 刘宗建, 王锦, 席家宁, 化学学报, 2020, 78, 232.)
环糊精是一类由吡喃葡萄糖单元构成的大环分子,能够通过包结作用与多种小分子、金属离子以及聚合物形成主-客体包结物,从而实现对客体分子理化性能的调控,被广泛用于制药、食品、化学、色谱、催化、生物技术、农业、化妆品、卫生、医学、纺织和环境等领域.然而,环糊精分子在众多应用领域不易操控,通过化学交联制备环糊精聚合物,形成以环糊精为主体的聚合物,则有望实现环糊精与交联基团的"集成"和"协同"作用,不但能有效解决环糊精分子的操控问题,而且能够赋予环糊精单分子所不具有的独特功能和理化性质,因此环糊精聚合物的设计合成及其应用吸引了广泛的研究兴趣.本综述介绍了环糊精聚合物领域的研究近况,对环糊精聚合物的种类按结构与性质进行了分类,系统介绍了各类环糊精聚合物的制备方法,重点介绍了近五年环糊精聚合物取得的新突破,并详细论述了各类环糊精聚合物在生物医药中的应用和其他领域的代表性应用,最后对环糊精聚合物作了简要总结和展望.
|
[3] |
(a) Nakahata, M.; Takashima, Y.; Harada, A. Chem. Pharm. Bull. 2017, 65, 330.
(b) Qi, W.; Ma, C.; Yan, Y.; Huang, J. Curr. Opin. Colloid Interface Sci. 2021, 56, 101526.
(c) Xu, W.; Li, X.; Wang, L.; Li, S.; Chu, S.; Wang, J.; Li, Y.; Hou, J.; Luo, Q.; Liu, J. Front. Chem. 2021, 9, 635507.
(d) Zhou, W.-L.; Chen, Y.; Liu, Y. Acta Chim. Sin. 2020, 78, 1164. (in Chinese)
( 周维磊, 陈湧, 刘育, 化学学报, 2020, 78, 1164.)
镧系元素由于其优异的发光特性,如长寿命的激发态、尖锐的线状发射带和较大的Stokes位移等,在发光材料中表现出极大的优势,被越来越多地应用于高级功能发光材料的设计中.而环糊精作为第二代超分子主体分子具有易于功能化修饰以及特异性结合发光客体等优势而被广泛地用于构筑发光材料、荧光传感等超分子体系.作者从基于环糊精的镧系稀土配位化合物超分子组装体的构筑出发,对不同镧系环糊精发光材料的最新研究进展进行综述,为开发构筑新型多功能化镧系发光材料提供参考.最后,提出了稀土发光材料目前所遇到的科学问题,并对基于环糊精稀土发光材料的发展方向进行了展望.
|
[4] |
(a) Yu, Y.; Rebek, R. Acc. Chem. Res. 2018, 51, 3031.
(b) Zhu, H.; Li, Q.; Khalil-Cruz, L. E.; Khashab, N. M.; Yu, G.; Huang, F. Sci. China Chem. 2021, 64, 688.
(c) Yin, H.; Wang, R. Isr. J. Chem. 2018, 58, 188.
(d) Gu, A.; Wheate, N. J. J. Inclus. Phenom. Macrocycl. Chem. 2021, 100, 55.
(e) Yang, K.; Zhang, Z.; Du, J.; Li, W.; Pei, Z. Chem. Commun. 2020, 56, 5865.
(f) Zheng, Z.; Geng, W.-C.; Xu, Z.; Guo, D.-S. Isr. J. Chem. 2019, 59, 913.
Nanoparticles are the most crucial part of nanomedicine and various kinds of nanoparticles have been developed for drug delivery. As a new kind of nanoparticles, macrocyclic amphiphiles are gaining more and more attention in the field of nanomedicine due to their intrinsic features of molecular recognition and robust assembly. In this review, we summarized the reported works of drug delivery using macrocyclic amphiphiles, including cyclodextrin, calixarene, cucurbituril and pillararene species. These macrocyclic amphiphiles, serving as a new matrix of nanomedicine, can enhance drug solubility, improve drug stability, selectively deliver drugs to disease both in vitro and in vivo.
(g) Yang, X.; Chen, M.; Wang, F.; Jin, X.-Y.; Cong, H.; Tao, Z. Mini-Rev. Org. Chem. 2018, 15, 274.
(h) Sathiyajith, C.; Shaikh, R. R.; Han, Q.; Zhang, Y.; Meguellati, K.; Yang, Y.-W. Chem. Commun. 2017, 53, 677.
(i) Yin, H.; Bardelang, D.; Wang, R. Trends Chem. 2021, 3, 1.
(j) Li, Z.; Wang, H.; Zhang, D. Chem. J. Chin. Univ. 2020, 41, 1139. (in Chinese)
( 黎占亭, 王辉, 张丹维, 高等学校化学学报, 2020, 41, 1139.)
(k) Shi, Q.; Wang, X.; Liu, B.; Qiao, P.; Li, J.; Wang, L. Chem. Commun. 2021, 57, 12379.
(l) Zhang, S.; Boussouar, I.; Li, H. Chin. Chem. Lett. 2021, 32, 642.
(m) Li, S.; Gao, Y.; Ding, Y.; Xu, A.; Tan, H. Chin. Chem. Lett. 2021, 32, 313.
(n) Xiao, T.; Zhou, L.; Sun, X.-Q.; Huang, F.; Lin, C.; Wang, L. Chin. Chem. Lett. 2020, 31, 1.
(o) Li, R.-H.; Ma, J.; Sun, Y.; Li, H. Chin. Chem. Lett. 2020, 31, 3095.
(p) Duan, Z.; Xu, F.; Huang, X.; Qian, Y.; Li, H.; Tian, W. Macromol. Rapid Commun. 2021, e2100775.
|
[5] |
(a) Hussain, A. M.; Ashraf, U. M.; Muhammad, G.; Tahir, N. M.; Bukhari, N. A. S. Curr. Pharm. Des. 2017, 23, 2377.
(b) Pan, Y. C.; X. Y. Hu, X. Y.; Guo, D.-S. Angew. Chem., Int. Ed. 2021, 60, 2768.
(c) Li, P.; Chen, Y.; Liu, Y. Chin. Chem. Lett. 2019, 30, 1190.
(d) Guo, D.-S.; Liu, Y. Acc. Chem. Res. 2014, 47, 1925.
(e) Perret, F.; Coleman, A. W. Chem. Commun. 2011, 47, 7303.
(f) Zhou, Y.; Li, H.; Yang, Y.-W. Chin. Chem. Lett. 2015, 26, 825.
|
[6] |
(a) Macartney, D. H. Future Med. Chem. 2013, 5, 2075.
The ideal neuromuscular blocking agent (NMBA) is regarded as being a non-depolarizing equivalent of succinylcholine, having a rapid onset and short duration of action, with minimal side effects. In the absence of a single drug, the administration of an aminosteroid NMBA, such as rocuronium, followed by reversal using an acetylcholinesterase inhibitor, such as neostigmine, is commonly employed. A different and safer approach to rapidly reversing the action of the NMBA, by encapsulating it with a macrocyclic or acyclic host molecule, such as the cyclodextrin sugammadex or more recently, cucurbituril-type hosts such as cyclic cucurbit[7]uril and the acyclic glycoluril tetramer calabadion 1, is described.
(b) Yin, H.; Zhang, X.; Wei, J.; Lu, S.; Bardelang, D.; Wang, R. Theranostics 2021, 11, 1513.
(c) Ma, D.; Hettiarachchi, G.; Nguyen, D.; Zhang, B.; Wittenberg, J. B.; Zavalij, P. Y.; Briken, V.; Isaacs, L. Nat. Chem. 2012, 4, 503.
(d) Mao, D.; Liang, Y.; Liu, Y.; Zhou, X.; Ma, J.; Jiang, B.; Liu, J.; Ma, D. Angew. Chem. Int. Ed. 2017, 56, 12614.
(e) Liu, J.; Chen, L.; Dong, G.; Yang, J.; Zhu, P.; Liao, X.; Wang, B.; Yang, B. J. Inclus. Phenom. Macrocycl. Chem. 2021, 100, 197.
(f) Deng, C.-L.; Murkli, S. L.; Isaacs, L. Chem. Soc. Rev. 2020, 49, 7516-7532.
(g) Lu, X.; Isaacs, L. Angew. Chem. Int. Ed. 2016, 55, 8076-8080.
|
[7] |
(a) Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. 2005, 44, 4844.
(b) Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.; Scherman, O. A. Chem. Rev. 2015, 115, 12320.
(c) Kim, K. Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Chem. Soc. Rev. 2007, 36, 267.
(d) Yao, Y. Q.; Chen, K.; Hua, Z. Y.; Zhu, Q. J.; Xue, S. F.; Tao, Z. J. Inclusion Phenom. Macrocyclic Chem. 2017, 89, 1.
|
[8] |
(a) Yu, S.-B.; Lin, F.; Tian, T.; Yu, J.; Zhang, D.-W.; Li, Z.-T. Chem. Soc. Rev. 2022, 51, 434.
(b) Tian, J.; Chen, L.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Commun. 2016, 52, 6351.
(c) Tian, J.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Natl. Sci. Rev. 2017, 4, 426.
(d) Yang, B.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Chin. J. Chem. 2020, 38, 970.
(e) Tian, J.; Zhou, T.-C.; Zhang, S.-C.; Aloni, S.; Altoe, M. V.; Xie, S.-H.; Wang, H.; Zhang, D.-W.; Zhao, X.; Liu, Y.; Li, Z.-T. Nat. Commun. 2014, 5, 5574.
Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. Here we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit8uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit8uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating the solvent, the periodicity of the framework is maintained in porous microcrystals. As a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity.
(f) Wang, H.; Zhang, D.; Li, Z. Chem. J. Chin. Univ. 2020, 41, 1139. (in Chinese)
( 王辉, 张丹维, 黎占亭, 高等学校化学学报, 2020, 41, 1139.)
|
[9] |
(a) Xu, Z.-Y.; Mao, W.; Zhao, Z.; Wang, Z.-K.; Liu, Y.-Y.; Wu, Y.; Wang, H.; Zhang, D.-W.; Li, Z.-T.; Ma, D. J. Mater. Chem. B 2022, 10, 899.
(b) Liu, Y.; Liu, C.-Z.; Wang, Z.-K.; Zhou, W.; Wang, H.; Zhang, Y.-C.; Zhang, D.-W.; Ma, D.; Li, Z.-T. Biomaterials 2022, 284, 121467.
|
[10] |
(a) Yao, C.; Tian, J.; Wang, H.; Zhang, D.-W.; Liu, Y.; Zhang, F.; Li, Z.-T. Chin. Chem. Lett. 2017, 28, 893.
(b) Tian, J.; Yao, C.; Yang, W.-L.; Zhang, L.; Zhang, D.-W.; Wang, H.; Zhang, F.; Liu, Y.; Li, Z.-T. Chin. Chem. Lett. 2017, 28, 798.
(c) Zhang, Y.-C.; Zeng, P.-Y.; Ma, Z.-Q.; Xu, Z.-Y.; Wang, Z.-K.; Guo, B.; Yang, F.; Li, Z.-T. Drug Delivery 2022, 29, 128.
|
[11] |
Yang, B.; Zhang, X.-D.; Li, J.; Tian, J.; Wu, Y.-P.; Yu, F.-X.; Wang, R.; Wang, H.; Zhang, D.-W.; Liu, Y.; Zhou, L.; Li, Z.-T. CCS Chem. 2019, 1, 156.
|
[12] |
(a) Guo, D.-S.; Jiang, B.-P.; Wang, X.; Liu, Y. Org. Biomol. Chem. 2012, 10, 720.
(b) Ma, D.; Zavalij, P. Y.; Isaacs, L. J. Org. Chem. 2010, 75, 4786.
|
[13] |
Yu, S.-B.; Qi, Q.; Yang, B.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Small 2018, 14, 1801037.
|
[14] |
Haino, T.; Yanase, M.; Fukunaga, C.; Fukazawa, Y. Tetrahedron 2006, 62, 2025.
|
[15] |
(a) Sun, W.; Wang, Y.; Ma, L.; Zheng, L.; Fang, W.; Chen, X.; Jiang, H. J. Org. Chem. 2018, 83, 14667.
(b) Han, Y.; Tian, Y.; Li, Z.; Wang, F. Chem. Soc. Rev. 2018, 47, 5165.
|
[16] |
Hardie, M. J. Supramol. Chem. 2002, 14, 7.
|
[17] |
Lim, S.; Pang, Z.; Hweiyuin, T.; Shaikh, M.; Adinarayana, G.; Garg, S. Drug Dev. Ind. Pharm. Drug Develop. Ind. Pharm. 2015, 41, 1.
|
/
〈 | 〉 |