化学学报 ›› 2015, Vol. 73 ›› Issue (3): 225-236.DOI: 10.6023/A14100693 上一篇    下一篇

所属专题: 新型太阳能电池

综述

有机物/硅杂化太阳能电池的研究进展

刘瑞远, 孙宝全   

  1. 苏州大学功能纳米与软物质研究院 苏州 215123
  • 投稿日期:2014-10-09 发布日期:2015-02-02
  • 通讯作者: 孙宝全 E-mail:bqsun@suda.edu.cn
  • 基金资助:

    项目受国家973基础研究项目(No. 2012CB932402)、国家自然科学基金(Nos. 61176057, 91123005, 60976050)和江苏高校优势学科建设工程资助项目资助.

Silicon-based Organic/inorganic Hybrid Solar Cells

Liu Ruiyuan, Sun Baoquan   

  1. Institute of Functional Nano & Soft Materials FUNSOM, Soochow University, Suzhou 215123
  • Received:2014-10-09 Published:2015-02-02
  • Supported by:

    Project supported by the National Basic Research Program of China (973 Program) (No. 2012CB932402), the National Natural Science Foundation of China (Nos. 61176057, 91123005, 60976050), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

有机/无机杂化太阳能电池既可以兼容无机材料的高稳定性, 高载流子迁移率和成熟的制备工艺, 又可以利用有机材料分子结构的可塑性, 调节光谱吸收以及光学带隙, 以及简便的溶液制作过程, 具有取得高效率低成本太阳能电池的巨大潜力. 硅和有机物在低温下形成的异质结光伏电池吸引了广泛的研究, 目前最高光电转换效率已经达到13.8%. 而采用硅纳米线等纳米结构之后使在几十微米的低纯硅上制备高效太阳能电池成为可能, 柔性硅基底的杂化太阳能电池效率已经超过12%. 本文首先介绍了硅基杂化太阳能电池的结构、工作机理和使用的有机材料, 按硅的结构分为平面硅基和微纳结构硅基杂化太阳能电池, 重点概述了该类电池最近几年的发展状况, 分析了硅的结构、有机材料和制备工艺对器件性能的影响. 最后对众多研究方法进行了归纳总结, 对存在的问题和解决策略提出了展望.

关键词: 硅结构, 有机物, 溶液旋涂, 界面优化, 杂化太阳能电池

Organic-inorganic hybrid solar cells display potential to be high efficiency and low cost photovoltaics due to combined advantages of high stability, high mobility and well developed fabrication process from inorganic materials and the properties to adjust organic molecule structure, absorption spectrum and bandgap from solution processable organics. Heterojunction photovoltaics formed by silicon and organics at low temperature has drawn great interests over past five years and the reported highest power conversion efficiency (PCE) has achieved up to 13.8%. The emerging of nanotechnology allows for silicon micro/nano structures including silicon nanowires, pyramids and nanocones with excellent light absorption properties which can greatly reduce the consumption of silicon materials as well as the purity dependence. The micro/nano structures also exhibit the advantages to offer larger junction area and more effective separation pathways for charge carriers. It is noticeable that silicon nanowire-based flexible hybrid solar cells with tens of micrometers silicon substrate thickness have achieved the PCE of above 12% adopting the most popular commercialized conjugated polymer poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). With the rapid developments of new organic materials and interface engineering methods, different kinds of organic-silicon hybrid solar cells has been reported and shown superior photovoltaic characteristics. The adopted organics include PEDOT:PSS, poly(3-hexylthiophene) (P3HT), 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), poly(3-octylthiophene) (P3OT), fullerene derivative and so on. This paper reviews the device structures of silicon-based hybrid solar cells, working mechanism and related organic molecular. The hybrid heterojunction with different materials and fabrication processes has been discussed. The last section summarizes the method used to improve the performance of the hybrid solar cells and depicts the challenges and prospects of the silicon-based hybrid solar cells in the near future.

Key words: silicon structures, organics, solution spin-coating process, optimization of interface, hybrid heterojunction solar cells