化学学报 ›› 2021, Vol. 79 ›› Issue (10): 1293-1301.DOI: 10.6023/A21060265 上一篇
研究论文
刘欢, 李京哲, 李平*(), 张广智, 张广智, 张豪, 邱灵芳, 齐晖, 多树旺*()
投稿日期:
2021-06-10
发布日期:
2021-08-10
通讯作者:
李平, 多树旺
基金资助:
Huan Liu, Li Li, Ping Li(), Guangzhi Zhang, Xun Xu, Hao Zhang, Lingfang Qiu, Hui Qi, Shuwang Duo()
Received:
2021-06-10
Published:
2021-08-10
Contact:
Ping Li, Shuwang Duo
Supported by:
文章分享
通过高温煅烧和油浴的方法构筑二维/三维(2D/3D) ZnIn2S4/TiO2异质结, 应用于光催化降解罗丹明B (RhB)和四环素(TC), 来研究异质结的构筑对TiO2可见光响应范围和光生载流子对分离效率的影响. 结果表明, TiO2维持了MOFs的形貌, 显示窄的可见光响应范围和高的光生电荷复合率, 与ZnIn2S4纳米片复合后, TiO2的比表面积增大, 光催化活性位点增多. 带隙宽度也由TiO2的3.23 eV减小到ZnIn2S4/TiO2-II的2.52 eV, 从而获得了更宽的可见光响应范围. 能带结构表明ZnIn2S4/TiO2是type II型异质结, 提高了光生载流子对的分离与转移效率. 在可见光照射下, ZnIn2S4/TiO2-II显示了最高的RhB光催化降解效率(93%), 分别是TiO2和ZnIn2S4的18和2倍. 同时, ZnIn2S4/TiO2-II也显示出比TiO2和ZnIn2S4更高的TC降解效率(90%). 循环实验表明ZnIn2S4/TiO2-II能保持良好的稳定性, 经5次循环实验后仍能降解83%的RhB. 研究表明基于MOFs衍生的TiO2构筑2D/3D ZnIn2S4/TiO2异质结是提高TiO2光催化性能的一条有效途径.
刘欢, 李京哲, 李平, 张广智, 张广智, 张豪, 邱灵芳, 齐晖, 多树旺. 2D/3D ZnIn2S4/TiO2复合物的原位构筑及其提高的光催化性能[J]. 化学学报, 2021, 79(10): 1293-1301.
Huan Liu, Li Li, Ping Li, Guangzhi Zhang, Xun Xu, Hao Zhang, Lingfang Qiu, Hui Qi, Shuwang Duo. In-situ Construction of 2D/3D ZnIn2S4/TiO2 with Enhanced Photocatalytic Performance[J]. Acta Chimica Sinica, 2021, 79(10): 1293-1301.
[1] |
Li, M. C.; Li, Y. R.; Zhao, J. Y.; Li, M. C.; Wu, Y. C.; Na, P. Chin. J. Chem. 2020, 38, 1332.
doi: 10.1002/cjoc.v38.11 |
[2] |
Low, J. X.; Zhang, L. Y.; Tong, T.; Shen, B. J.; Yu, J. G. J. Catal. 2018, 361, 255.
doi: 10.1016/j.jcat.2018.03.009 |
[3] |
Yan, Y. J.; Yang, M.; Shi, H. X.; Wang, C. J.; Fan, J.; Liu, E. Z.; Hu, X. Y. Ceram. Int. 2019, 45, 6093.
doi: 10.1016/j.ceramint.2018.12.083 |
[4] |
Li, C; Chen, F. H.; Ye, L.; Li, W.; Yu, H.; Zhao, T. Acta Chim. Sinica 2020, 78, 1448. (in Chinese)
doi: 10.6023/A20070322 |
(李宸, 陈凤华, 叶丽, 李伟, 于晗, 赵彤, 化学学报, 2020, 78, 1448.)
doi: 10.6023/A20070322 |
|
[5] |
Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681. (in Chinese)
doi: 10.6023/A19040118 |
(彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.)
doi: 10.6023/A19040118 |
|
[6] |
Xu, C. Y.; Lin, J. Y.; Pan, F. Q.; Deng, B. W.; Wang, Z. H.; Zhou, J. H.; Chen, Y.; Ma, J. C.; Gu, Z. E.; Zhang, Y. W. Acta Chim. Sinica 2017, 75, 699. (in Chinese)
doi: 10.6023/A17030083 |
(许辰宇, 林伽毅, 潘富强, 邓博文, 王智化, 周俊虎, 陈云, 马京程, 顾志恩, 张彦威, 化学学报, 2017, 75, 699.)
doi: 10.6023/A17030083 |
|
[7] |
Chen, Q.; Chen, X. J.; Fang, M. L.; Chen, J. Y.; Li, Y. J.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. J. Mater. Chem. A 2019, 7, 1334.
doi: 10.1039/C8TA09412H |
[8] |
Zhou, Y.; Ouyang, W. L.; Wang, Y. J.; Wang, H. Q.; Wu, Z. B. Acta Phys.-Chim. Sin. 2021, 37, 2009045. (in Chinese)
|
(周易, 欧阳威龙, 王岳军, 王海强, 吴忠标, 物理化学学报, 2021, 37, 2009045.)
|
|
[9] |
Guo, Y.; Li, Y. R.; Wang, C. M.; Long, R.; Xiong, Y. J. Acta Chim. Sinica 2019, 77, 520. (in Chinese)
doi: 10.6023/A19040108 |
(郭宇, 李燕瑞, 王成名, 龙冉, 熊宇杰, 化学学报, 2019, 77, 520.)
doi: 10.6023/A19040108 |
|
[10] |
Sheng, Y. Q.; Wei, Z.; Miao, H.; Yao, W. Q.; Li, H. Q.; Zhu, Y. F. Chem. Eng. J. 2019, 370, 287.
doi: 10.1016/j.cej.2019.03.197 |
[11] |
Jiang, J. J.; Xing, Z. P.; Li, M.; Li, Z. Z.; Yin, J. W.; Kuang, J. Y.; Zou, J. L.; Zhu, Q.; Zhou, W. J. Colloid Interf. Sci. 2018, 521, 102.
doi: 10.1016/j.jcis.2018.03.030 |
[12] |
Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Chin. J. Catal. 2021, 42, 56.
doi: 10.1016/S1872-2067(20)63634-8 |
[13] |
Liu, J. Z.; Liu, Z. Y.; Piao, C. C.; Li, S. G.; Tang, J. H.; Fang, D. W.; Zhang, Z. H.; Wang, J. J. Power Sources 2020, 469, 228430.
doi: 10.1016/j.jpowsour.2020.228430 |
[14] |
Luo, D.; Peng, L.; Wang, Y.; Lu, X. Y.; Yang, C.; Xu, X. S.; Huang, Y. C.; Ni, Y. H. J. Mater. Chem. A 2021, 9, 908.
doi: 10.1039/D0TA10374H |
[15] |
Jiang, Y. H.; Peng, Z. Y.; Zhang, S. B.; Li, F.; Liu, Z. C.; Zhang, J. M.; Liu, Y.; Wang, K. Ceram. Int. 2018, 44, 6115.
doi: 10.1016/j.ceramint.2017.12.244 |
[16] |
Sun, M.; Zhao, X.; Zeng, Q.; Yan, T.; Ji, P. G.; Wu, T. T.; Wei, D.; Du, B. Appl. Surf. Sci. 2017, 407, 328.
doi: 10.1016/j.apsusc.2017.02.181 |
[17] |
Huang, T.; Chen, W.; Liu, T. Y.; Hao, Q. L.; Liu, X. H. Powder Technol. 2017, 315, 157.
doi: 10.1016/j.powtec.2017.03.054 |
[18] |
He, Y. Q.; Rao, H.; Song, K. P.; Li, J. X.; Yu, Y.; Lou, Y.; Li, C. G.; Han, Y.; Shi, Z.; Feng, S. H. Adv. Funct. Mater. 2019, 29, 1905153.
doi: 10.1002/adfm.v29.45 |
[19] |
Zhao, Z. H.; Shi, C. X.; Shen, Q.; Li, W. J.; Men, D. D.; Xu, B.; Sun, Y. Q.; Li, C. C. CrystEngComm 2020, 22, 8221.
doi: 10.1039/D0CE01462A |
[20] |
Yang, G.; Chen, D. M.; Ding, H.; Feng, J. J.; Zhang, J. Z.; Zhu, Y. F.; Hamid, S.; Bahnemann, D. W. Appl. Catal. B: Environ. 2017, 219, 611.
doi: 10.1016/j.apcatb.2017.08.016 |
[21] |
Li, Q.; Xia, Y.; Yang, C.; Lv, K. L.; Lei, M.; Li, M. Chem. Eng. J. 2018, 349, 287.
doi: 10.1016/j.cej.2018.05.094 |
[22] |
Li, H.; Chen, Z. H.; Zhao, L.; Yang, G. D. Rare Met. 2019, 38, 420.
doi: 10.1007/s12598-019-01253-y |
[23] |
Li, H.; Li, Y. H.; Wang, X. T.; Hou, B. R. J. Alloys Compd. 2019, 771, 892.
doi: 10.1016/j.jallcom.2018.09.027 |
[24] |
Liu, Y. X.; Ye, Z. Y.; Li, D.; Wang, M.; Zhang, Y. X.; Huang, W. X. Appl. Surf. Sci. 2019, 473, 500.
doi: 10.1016/j.apsusc.2018.12.177 |
[25] |
Wu, Q. Y.; Zhang, C. X.; Sun, K.; Jiang, H. L. Acta Chim. Sinica 2020, 78, 688. (in Chinese)
doi: 10.6023/A20050141 |
(吴浅耶, 张晨曦, 孙康, 江海龙, 化学学报, 2020, 78, 688.)
doi: 10.6023/A20050141 |
|
[26] |
Lin, Y. F.; Wan, H.; Chen, F. S.; Liu, X. H.; Ma, R. Z.; Sasaki, T. Dalton Trans. 2018, 47, 7694.
doi: 10.1039/C8DT01117F |
[27] |
Yang, Y.; Su, J. W.; Jiang, P.; Chen, J. T.; Hu, L.; Chen, Q. W. Chin. J. Chem. 2021, 39, 2626.
doi: 10.1002/cjoc.v39.9 |
[28] |
Li, N. X.; Huang, H. L.; Bibi, R.; Shen, Q. H.; Ngulube, R.; Zhou, J. C.; Liu, M. C. Appl. Surf. Sci. 2019, 476, 378.
doi: 10.1016/j.apsusc.2019.01.105 |
[29] |
Wang, S. B.; Guan, B. Y.; Lou, X. W. J. Am. Chem. Soc. 2018, 140, 5037.
doi: 10.1021/jacs.8b02200 |
[30] |
Li, N.; Tian, Y.; Zhao, J. H.; Zhang, J.; Zuo, W.; Kong, L. C.; Cui, H. Chem. Eng. J. 2018, 352, 412.
doi: 10.1016/j.cej.2018.07.038 |
[31] |
Chen, Q. F.; Ren, B. S.; Zhao, Y. B.; Xu, X.; Ge, H. Y.; Guan, R. F.; Zhao, J. C. Chem. Eur. J. 2014, 20, 17039.
doi: 10.1002/chem.201404816 |
[32] |
Qian, Y. T.; Yang, M. K.; Zhang, F. F.; Du, J. M.; Li, K. D.; Lin, X. L.; Zhu, X. R.; Lu, Y. Y.; Wang, W. M.; Kang, D. J. Mater. Charact. 2018, 142, 43.
doi: 10.1016/j.matchar.2018.05.025 |
[33] |
Yuan, Y. J.; Chen, D. Q.; Zhong, J. S.; Yang, L. X.; Wang, J. J.; Liu, M. J.; Tu, W. G.; Yu, Z. T.; Zou, Z. G. J. Mater. Chem. A 2017, 5, 15771.
doi: 10.1039/C7TA04410K |
[34] |
Gu, Z. Z.; Chen, L. Y.; Li, X. Z.; Chen, L.; Zhang, Y. Y.; Duan, C. Y. Chem. Sci. 2019, 10, 2111.
doi: 10.1039/C8SC05450A |
[35] |
Li, P.; Liang, T. T.; Liu, H.; Li, J. Z.; Duo, S. W.; Xu, X.; Qiu, L. F.; Wen, X. Q.; Shi, R. Y. Mater. Res. Express 2021, 8, 025505.
doi: 10.1088/2053-1591/abe2e2 |
[36] |
Zhang, W.; He, H. L.; Tian, Y.; Lan, K.; Liu, Q.; Wang, C. Y.; Liu, Y.; Elzatahry, A.; Che, R. C.; Li, W.; Zhao, D. Y. Chem. Sci. 2019, 10, 1664.
doi: 10.1039/c8sc04155e pmid: 30842830 |
[37] |
Yu, D. H.; Yu, X. D.; Wang, C. H.; Liu, X. C.; Xing, Y. ACS Appl. Mater. Interfaces 2012, 4, 2781.
doi: 10.1021/am3004363 |
[38] |
Yang, K.; Meng, C.; Lin, L. L.; Peng, X. Y.; Chen, X.; Wang, X. X.; Dai, W. X.; Fu, X. Z. Catal. Sci. Technol. 2016, 6, 829.
doi: 10.1039/C5CY01009H |
[39] |
Ding, Y.; Zhou, L.; Mo, L.; Jiang, L.; Hu, L. H.; Li, Z. Q.; Chen, S. H.; Dai, S. Y. Adv. Funct. Mater. 2015, 25, 5946.
doi: 10.1002/adfm.201502224 |
[40] |
Zhou, M.; Wang, S. B.; Yang, P. J.; Luo, Z. S.; Yuan, R. S.; Asiri, A. M.; Wakeel, M.; Wang, X. C. Chem. Eur. J. 2018, 24, 18529.
doi: 10.1002/chem.v24.69 |
[41] |
Gao, F.; Chen, X. Y.; Yin, K. B.; Dong, S.; Ren, Z. F.; Yuan, F.; Yu, T.; Zou, Z. G.; Liu, J. M. Adv. Mater. 2007, 19, 2889.
doi: 10.1002/(ISSN)1521-4095 |
[42] |
Wang, X. X.; Dai, W.; Li, X. X.; Chen, Z. Y.; Zheng, Z. C.; Chen, Z.; Zhang, G. Z.; Xiong, L. N.; Duo, S. W. J. Alloys Compd. 2020, 825, 154052.
doi: 10.1016/j.jallcom.2020.154052 |
[43] |
Yuk, S. F.; Asthagiri, A. J. Chem. Phys. 2015, 142, 124704.
doi: 10.1063/1.4915521 |
[44] |
Sun, H. G.; Zhao, X.; Zhang, L.; Fan, W. L. J. Phys. Chem. C 2011, 115, 2218.
doi: 10.1021/jp110263e |
[45] |
Ren, J. T.; Yuan, K.; Wu, K.; Zhou, L.; Zhang, Y. W. Inorg. Chem. Front. 2019, 6, 366.
doi: 10.1039/C8QI01202D |
[46] |
Jing, J. F.; Yang, J.; Zhang, Z. J.; Zhu, Y. F. Adv. Energy Mater. 2021, 11, 2101392.
doi: 10.1002/aenm.v11.29 |
[47] |
He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Sol. Energ. Mat. Sol. C 2015, 137, 175.
doi: 10.1016/j.solmat.2015.01.037 |
[48] |
Zhao, Y.; Huang, X.; Tan, X.; Yu, T.; Li, X. L.; Yang, L. B.; Wang, S. C. Appl. Surf. Sci. 2016, 365, 209.
doi: 10.1016/j.apsusc.2015.12.249 |
[1] | 陈健强, 朱钢国, 吴劼. 镍催化氮杂环丙烷的开环偶联反应研究[J]. 化学学报, 2024, 82(2): 190-212. |
[2] | 吴宇晗, 张栋栋, 尹宏宇, 陈正男, 赵文, 匙玉华. “双碳”目标下Janus In2S2X光催化还原CO2的密度泛函理论研究[J]. 化学学报, 2023, 81(9): 1148-1156. |
[3] | 张凯, 武晓君. 具有室温铁磁性的二维Janus钛硫属化物★[J]. 化学学报, 2023, 81(9): 1142-1147. |
[4] | 何明慧, 叶子秋, 林桂庆, 尹晟, 黄心翊, 周旭, 尹颖, 桂波, 汪成. 卟啉基共价有机框架的光催化研究进展★[J]. 化学学报, 2023, 81(7): 784-792. |
[5] | 刘嘉文, 林玮璜, 王惟嘉, 郭学益, 杨英. Cu1.94S-SnS纳米异质结的合成及其光催化降解研究[J]. 化学学报, 2023, 81(7): 725-734. |
[6] | 孙博, 琚雯雯, 王涛, 孙晓军, 赵婷, 卢晓梅, 陆峰, 范曲立. 高分散共轭聚合物-金属有机框架纳米立方体的制备及抗肿瘤应用[J]. 化学学报, 2023, 81(7): 757-762. |
[7] | 刘坜, 郑刚, 范国强, 杜洪光, 谭嘉靖. 4-酰基/氨基羰基/烷氧羰基取代汉斯酯参与的有机反应研究进展[J]. 化学学报, 2023, 81(6): 657-668. |
[8] | 李飞, 丁汇丽, 李超忠. 基于氟仿衍生的三氟甲基硼络合物参与的烯烃氢三氟甲基化反应[J]. 化学学报, 2023, 81(6): 577-581. |
[9] | 徐袁利, 潘辉, 杨义, 左智伟. 连续流条件下蒽-铈协同催化的苄位碳氢键选择性氧化反应★[J]. 化学学报, 2023, 81(5): 435-440. |
[10] | 齐学平, 王飞, 张健. 后合成法构筑钛基金属有机框架及其应用[J]. 化学学报, 2023, 81(5): 548-558. |
[11] | 陈俊畅, 张明星, 王殳凹. 晶态多孔材料合成方法的研究进展[J]. 化学学报, 2023, 81(2): 146-157. |
[12] | 陈健强, 朱钢国, 吴劼. 草酸酯类化合物在自由基脱羟基化反应中的研究进展[J]. 化学学报, 2023, 81(11): 1609-1623. |
[13] | 杨春晖, 陈景超, 李新汉, 孟丽, 王凯民, 孙蔚青, 樊保敏. 可见光催化的硅烷二氟烯丙基化反应[J]. 化学学报, 2023, 81(1): 1-5. |
[14] | 张国强, 霍京浩, 王鑫, 郭守武. 基于P掺杂TiO2/C纳米管负极的高性能锂离子电容器[J]. 化学学报, 2023, 81(1): 6-13. |
[15] | 解众舒, 薛中鑫, 许子文, 李倩, 王洪宇, 李维实. 石墨相氮化碳的共轭交联修饰及其对可见光催化产氢性能的影响[J]. 化学学报, 2022, 80(9): 1231-1237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||