化学学报 ›› 2020, Vol. 78 ›› Issue (5): 407-411.DOI: 10.6023/A20040134 上一篇    下一篇

研究通讯

通过赝反伽伐尼反应实现金纳米粒子模块替换

金凤鸣a,b,c, 董宏伟a,b,c, 赵燕a,b,c, 庄胜利a,c, 廖玲文a,c, 闫楠a,c, 古万苗a,b,c, 查珺a,b,c, 袁金云d, 李进e, 邓海腾f, 甘自保a,c, 杨金龙d, 伍志鲲a,c   

  1. a 中国科学院固体物理研究所 中国科学院材料物理重点实验室 安徽省纳米材料与技术重点实验室 中国科学院纳米卓越中心 合肥 230031;
    b 中国科学技术大学 合肥 230026;
    c 安徽大学 物质科学与信息技术研究院 合肥 230601;
    d 中国科学技术大学 合肥微尺度物质科学国家研究中心 合肥 230026;
    e 清华大学 生命科学学院 清华大学-北京大学生命科学联合中心 北京 100084;
    f 清华大学 生命科学学院 生物信息学教育部重点实验室 北京 100084
  • 投稿日期:2020-04-30 发布日期:2020-05-07
  • 通讯作者: 甘自保, 伍志鲲 E-mail:zbgan@iim.ac.cn;zkwu@issp.ac.cn
  • 基金资助:
    项目受国家自然科学基金(Nos.21925303,21971246,21829501,21905284,21771186,21603234,21222301,21171170,21528303)、中国博士后科学基金会(Y94G4E356B)、中国科学院合肥研究院院长基金(BJPY2019A02)、中科院合肥物质科学研究院“十三五”规划重点支持项目(KP-2017-16)、中国科学院/国家外国专家局创新团队国际合作伙伴计划和合肥物质科学技术中心方向项目培育基金(2017FXCX002)资助.

Module Replacement of Gold Nanoparticles by a Pseudo-AGR Process

Jin Fengminga,b,c, Dong Hongweia,b,c, Zhao Yana,b,c, Zhuang Shenglia,c, Liao Lingwena,c, Yan Nana,c, Gu Wanmiaoa,b,c, Zha Juna,b,c, Yuan Jinyund, Li Jine, Deng Haitengf, Gan Zibaoa,c, Yang Jinlongd, Wu Zhikuna,c   

  1. a Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
    b University of Science and Technology of China, Hefei 230026, China;
    c Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
    d Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
    e Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
    f MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
  • Received:2020-04-30 Published:2020-05-07
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Nos. 21925303, 21971246, 21829501, 21905284, 21771186, 21603234, 21222301, 21171170, 21528303), China Postdoctoral Science Foundation (Y94G4E356B), CASHIPS Director's Fund (BJPY2019A02), Key Program of 13th five-year plan, CASHIPS (KP-2017-16), CAS/SAFEA International Partnership Program for Creative Research Teams and Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2017FXCX002).

通过可控的方式精确调控纳米粒子的结构仍是一个富有挑战性和鼓舞人心的课题.尽管单原子或两、三个金属原子的精细调控已经在金纳米粒子中实现,涉及三个以上金属原子的取代(模块取代)还没有报道.本工作报道了环己硫醇配体保护的Au48(CHT)26的合成及其通过赝反伽伐尼过程的模块取代.单晶结构揭示模块取代的产物与母体团簇共用一个相似的Au31(CHT)12主体,但剩余部分不同(Au6(CHT)11 vs.Au16(CHT)14).一个有趣的发现是模块取代抑制了Au48(CHT)26的光热过程,却增强了它的发射,赋予了所合成团簇更好的双(多)功能应用潜力.光热效应的减弱和发射的增强也暗示了这两种作用能够彼此至少部分转化,对于研究这两种效应之间的相互影响也具有重要的启示.

关键词: 金纳米团簇, 模块替换, 赝反伽伐尼反应, 光热效应, 荧光

Precisely modulating the structure of nanoparticles in a controlled manner is still a challenging and inspiring topic. Although the single or few-metal atom tailoring of gold nanoparticles has been reported, local structural replacement involving over three net metal atoms (module replacement, MR) has not been hitherto achieved. Herein, we report the synthesis of cyclohexanethiolated metal nanoclusters (NCs) Au48(CHT)26 and their MR by a so-called pseudo-anti-galvanic reaction (AGR) process. The MR product Au37(CHT)23 shares a similar Au31(CHT)12 unit with its predecessor Au48(CHT)26; however, it differs from its predecessor in the remaining section (Au6(CHT)11 vs. Au16(CHT)14), as revealed by single-crystal X-ray crystallography (SCXC). Interestingly, the MR inhibits the photothermy but enhances the emission of Au48(CHT)26 NCs, which might endow the as-obtained NC better potential for bi(multiple)-functional application. The counter effects of the MR on the emission and photothermy indicate that photoluminescence and photothermy can be at least partly converted into each other, which has some important implications for the understanding of their interaction.

Key words: gold nanoparticles, module replacement, pseudo-anti-galvanic reaction (AGR), photothermy, photoluminescence