化学学报 ›› 2024, Vol. 82 ›› Issue (2): 226-241.DOI: 10.6023/A23100467 上一篇    下一篇

综述

CO2捕集膜分离的Pebax基材料研究进展

何文a,b, 王波a, 冯晗俊b, 孔祥如b, 李桃b, 肖睿b,*()   

  1. a 国能锦界能源有限责任公司 榆林 719319
    b 东南大学 能源热转换及其过程测控教育部重点实验室 南京 210096
  • 投稿日期:2023-10-26 发布日期:2024-01-11
  • 作者简介:

    何文, 博士研究生, 正高级工程师, 主要从事燃煤电站生产技术管理, 燃煤电站二氧化碳捕集研究.

    肖睿, 教授, 博士生导师, 东南大学能源与环境学院院长, 能源热转换及其过程测控教育部重点实验室主任, 国家杰出青年基金获得者, 长江学者特聘教授. 兼任江苏省能源研究会理事长, 中国工程热物理学会燃烧分会副主任. 主要研究方向为固体燃料热解气化, 二氧化碳捕集与利用.

  • 基金资助:
    国家自然科学基金重点项目(52336007); 中央高校基本科研业务费专项资金项目(2242023k30026)

Research Progress of CO2 Capture and Membrane Separation by Pebax Based Materials

Wen Hea,b, Bo Wanga, Hanjun Fengb, Xiangru Kongb, Tao Lib, Rui Xiaob()   

  1. a National Energy Group Jinjie Energy Co., Yulin 719319, China
    b Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
  • Received:2023-10-26 Published:2024-01-11
  • Contact: E-mail: ruixiao@seu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52336007); Fundamental Research Funds for the Central Universities(2242023k30026)

膜分离CO2技术是实现“双碳”目标的关键技术手段之一, 而膜材料的性能对膜分离效果具有重要影响. 聚醚嵌段聚酰胺(Pebax)对CO2具有较高的渗透性和选择性, 其自身具有高机械强度和良好的化学稳定性, 且价廉易得, 是一种极具潜力的聚合物气体分离膜材料. 本综述介绍了用于CO2捕集的Pebax基膜材料的特征及其气体分离性能的影响因素, 重点概述了Pebax制备工艺优化、促进传递膜、交联和共混四种Pebax超薄复合膜的优化方式, 并综述了Pebax基混合基质膜及填料功能化的研究进展. 针对目前Pebax基材料存在渗透性和选择性权衡的问题, 对Pebax基膜材料未来的优化方向作出了展望.

关键词: Pebax, 膜分离, CO2捕集, 薄膜制备, 混合基质膜

Membrane separation technology for CO2 is a critical means of achieving the carbon peaking and carbon neutrality goals, and the performance of membrane materials significantly impacts the effectiveness of membrane separation. Polyether block amide (Pebax), known for its high permeability and selectivity towards CO2, along with high mechanical strength and excellent chemical stability, is a highly promising polymer for gas separation membrane materials due to its cost-effectiveness. However, the permeability and selectivity of pure Pebax membranes for CO2 are still constrained by the “trade-off ” effect. Therefore, the future development direction involves the physical or chemical optimization of Pebax to enhance its gas separation performance. This review introduces the characteristics of Pebax-based membrane materials for CO2 capture and explores the factors influencing their gas separation performance. The emphasis is on optimizing Pebax preparation processes, promoting transfer membranes, crosslinking, and blending four types of ultra-thin Pebax composite membranes. Additionally, the paper reviews the research progress on Pebax-based mixed matrix membranes and filler functionalization. From the perspective of process improvement, methods such as choosing a shorter chain length of polyamide (PA), increasing casting solution concentration, using solvents with dissolution parameters closer to Pebax, and employing lower drying temperatures contribute to the formation of more regular and higher crystallinity membranes, enhancing gas membrane separation selectivity. Combining grafting, plasma treatment, and other techniques in the preparation of composite membrane materials allows for minimizing the thickness of the Pebax layer to maximize permeability. In facilitated transport membranes, further research is required to explore the “competition-promotion” relationship between water and CO2 transport for different CO2 carriers. Reducing the free water content in the membrane will directly limit the generation of CO2 carriers like bicarbonate, potentially hindering CO2 dissolution in coordination with functional groups such as carboxylic acids. To overcome the limitations of a single material and achieve new properties that a single component cannot attain, the review suggests selecting multiple polymers or fillers with favorable physical and chemical properties and compatibility at the polymer-filler interface to prepare mixed matrix membranes (MMMs). Choosing porous fillers or polymer materials with good synergistic effects, constructing ternary or even quaternary systems, and directionally controlling the membrane's pore structure and hydrophilic-hydrophobic characteristics hold the potential to break through the trade-off relationship while obtaining superior mechanical strength, durability, and tolerance to harsh operating environments. In conclusion, based on the above findings, this review provides a perspective on the future optimization directions for Pebax-based membrane materials, addressing the current trade-off between permeability and selectivity.

Key words: Pebax, membrane separation, CO2 capture, membrane fabrication, mixed-matrix membranes