化学学报 ›› 2024, Vol. 82 ›› Issue (4): 435-442.DOI: 10.6023/A24010012 上一篇 下一篇
研究论文
冯全友a, 张云龙a, 李昊a, 李倩意a, 沈建平b,*(), 虞梦娜a,*(), 解令海a
投稿日期:
2024-01-12
发布日期:
2024-03-08
基金资助:
Quanyou Fenga, Yunlong Zhanga, Hao Lia, Qianyi Lia, Jianping Shenb,*(), Mengna Yua,*(), Linghai Xiea
Received:
2024-01-12
Published:
2024-03-08
Contact:
* E-mail: Supported by:
文章分享
有机发光材料因其低成本、可溶液加工、机械灵活性和易于调控的光电特性而备受关注, 被广泛应用于有机发光二极管、有机固体激光器和荧光成像等领域. 然而, 有机激光增益介质普遍存在载流子迁移率低、三重态和极化子寿命长和宽吸收以及稳定性差等问题, 阻碍了有机电泵浦激光的实现. 通过引入大体积空间位阻基团可抑制发光分子间的相互作用, 减弱材料的发光猝灭效应, 有效提高发光效率. 设计合成了两种具有不同空间构型的芴基寡聚物HTF和ITF, 其放大自发辐射(ASE)阈值分别为6.67和12.35 µJ/cm2. 其中, 寡聚物HTF展现更高的热稳定性、更小的温度依赖性和膜厚依赖性. 此外, 还发现溴原子的取代对二者ASE特性具有不同程度的负面影响.
冯全友, 张云龙, 李昊, 李倩意, 沈建平, 虞梦娜, 解令海. 空间构型和溴取代对三联芴放大自发辐射行为的影响[J]. 化学学报, 2024, 82(4): 435-442.
Quanyou Feng, Yunlong Zhang, Hao Li, Qianyi Li, Jianping Shen, Mengna Yu, Linghai Xie. Geometry Configuration and Bromo Substitution Effect of Terfluorenes on Amplified Spontaneous Emission Behaviors[J]. Acta Chimica Sinica, 2024, 82(4): 435-442.
Compound | 60 ℃ | 90 ℃ | 120 ℃ | 150 ℃ | 180 ℃ | 210 ℃ | 240 ℃ |
---|---|---|---|---|---|---|---|
HTF | 15.18 | 16.38 | 9.43 | 15.25 | 19.22 | 22.31 | 113.04 |
ITF | 17.10 | 24.08 | 15.05 | 18.32 | 63.46 | 94.94 | 164.33 |
HTF-Br | — | 479.08 | — | — | — | — | — |
ITF-Br | — | — | — | — | — | — | — |
Compound | 60 ℃ | 90 ℃ | 120 ℃ | 150 ℃ | 180 ℃ | 210 ℃ | 240 ℃ |
---|---|---|---|---|---|---|---|
HTF | 15.18 | 16.38 | 9.43 | 15.25 | 19.22 | 22.31 | 113.04 |
ITF | 17.10 | 24.08 | 15.05 | 18.32 | 63.46 | 94.94 | 164.33 |
HTF-Br | — | 479.08 | — | — | — | — | — |
ITF-Br | — | — | — | — | — | — | — |
[1] |
Xu, J.; Lin, A.; Yu, X.; Song, Y.; Kong, M.; Qu, F.; Han, J.; Jia, W.; Deng, N. IEEE Photon. 2016, 28, 2133.
|
[2] |
Du, Q.; Liu, L.; Tang, R.; Ai, J.; Wang, Z.; Fu, Q.; Li, C.; Chen, Y.; Feng, X. Adv. Mater. Technol. 2021, 6, 2100122.
doi: 10.1002/admt.v6.9 |
[3] |
Liu, Y.; Yang, W.; Xiao, S.; Zhang, N.; Fan, Y.; Qu, G.; Song, Q. ACS Nano 2019, 13, 10653.
doi: 10.1021/acsnano.9b04925 |
[4] |
Restuccia, N.; Silipigni, L.; Cordaro, M.; Torrisi, L. Plasma Sci. Technol. 2019, 6, 1.
|
[5] |
Partovi, A.; Peale, D.; Wuttig, M.; Murray, C. A.; Zydzik, G.; Hopkins, L.; Baldwin, K.; Hobson, W. S.; Wynn, J.; Lopata, J.; Dhar, L.; Chichester, R.; Yeh, J. H. J. Appl. Phys. Lett. 1999, 75, 1515.
doi: 10.1063/1.124740 |
[6] |
Zhang, Q.; Zeng, W.-J.; Xia, R.-D. Acta Phys. Sin. 2015, 64, 094202. (in Chinese)
doi: 10.7498/aps |
(张琪, 曾文进, 夏瑞东, 物理学报, 2015, 64, 094202).
|
|
[7] |
Qian, Y.; Wei, Q.; Del Pozo, G.; Mroz, M. M.; Luer, L.; Casado, S.; Cabanillas-Gonzalez, J.; Zhang, Q.; Xie, L.; Xia, R.; Huang, W. Adv. Mater. 2014, 26, 2937.
doi: 10.1002/adma.v26.18 |
[8] |
Soffer, B. H.; McFarland, B. B. Appl. Phys. Lett. 1967, 10, 266.
doi: 10.1063/1.1754804 |
[9] |
Wang, L.; Wu, J.; Yan, C.; Yang, W.; Che, Z.; Xia, X.; Wang, X.; Liao, L. Chin. Chem. Lett. 2023, 109365.
|
[10] |
Zhuo, Z.; Wei, C.; Ni, M.; Cai, J.; Bai, L.; Zhang, H.; Zhao, Q.; Sun, L.; Lin, J.; Liu, W.; Ding, X.; Shen, K.; Huang, W. Dyes Pigm. 2022, 204, 110425.
doi: 10.1016/j.dyepig.2022.110425 |
[11] |
Karl, N. Phys. Status Solidi 1972, 13, 651.
doi: 10.1002/(ISSN)1521-396X |
[12] |
Moses, D. Appl. Phys. Lett. 1992, 60, 3215.
doi: 10.1063/1.106743 |
[13] |
Sandanayaka, A. S.; Matsushima, T.; Bencheikh, F.; Terakawa, S.; Potscavage, W. J.; Qin, C.; Fujihara, T.; Goushi, K.; Ribierre, J.-C.; Adachi, C. Appl. Phys. Express 2019, 12, 061010.
doi: 10.7567/1882-0786/ab1b90 |
[14] |
Sandanayaka, A. S.; Matsushima, T.; Bencheikh, F.; Yoshida, K.; Inoue, M.; Fujihara, T.; Goushi, K.; Ribierre, J.-C.; Adachi, C. Sci. Adv. 2017, 3, e1602570.
doi: 10.1126/sciadv.1602570 |
[15] |
Wang, K.; Zhao, Y. S. Chem 2021, 7, 3221.
doi: 10.1016/j.chempr.2021.10.014 |
[16] |
Lin, D.; Liu, J.; Zhang, H.; Qian, Y.; Yang, H.; Liu, L.; Ren, A.; Zhao, Y.; Yu, X.; Wei, Y.; Hu, S.; Li, L.; Li, S.; Sheng, C.; Zhang, W.; Chen, S.; Shen, J.; Liu, H.; Feng, Q.; Wang, S.; Xie, L.; Huang, W. Adv. Mater. 2022, 34, e2109399.
|
[17] |
Jiang, Y.; Liu, Y. Y.; Liu, X.; Lin, H.; Gao, K.; Lai, W. Y.; Huang, W. Chem. Soc. Rev. 2020, 49, 5885.
doi: 10.1039/D0CS00037J |
[18] |
Thomas, S. Nat. Electron. 2023, 6, 721.
doi: 10.1038/s41928-023-01060-5 |
[19] |
Baldo, M. A.; Holmes, R. J.; Forrest, S. R. Phys. Rev. B 2002, 66, 035321.
doi: 10.1103/PhysRevB.66.035321 |
[20] |
Liu, J.; Zhang, H.; Dong, H.; Meng, L.; Jiang, L.; Jiang, L.; Wang, Y.; Yu, J.; Sun, Y.; Hu, W.; Heeger, A. J. Nat. Commun. 2015, 6, 10032.
doi: 10.1038/ncomms10032 |
[21] |
Feng, Q.; Xie, S.; Tan, K.; Zheng, X.; Yu, Z.; Li, L.; Liu, B.; Li, B.; Yu, M.; Yu, Y.; Zhang, X.; Xie, L.; Huang, W. ACS. Appl. Polym. Mater. 2019, 1, 2441.
doi: 10.1021/acsapm.9b00559 |
[22] |
Troisi, A.; Orlandi, G. J. Phys. Chem. 2006, 110, 4065.
doi: 10.1021/jp055432g |
[23] |
Zhang, W.; Yan, Y.; Gu, J.; Yao, J.; Zhao, Y. S. Angew. Chem. Int. Ed. 2015, 54, 7125.
doi: 10.1002/anie.201502684 pmid: 25925895 |
[24] |
Qiao, C.; Zhang, C.; Zhou, Z.; Yao, J.; Zhao, Y. S. CCS Chem. 2022, 4, 250.
doi: 10.31635/ccschem.021.202000768 |
[25] |
Ou, Q.; Peng, Q.; Shuai, Z. Nat. Commun. 2020, 11, 4485.
doi: 10.1038/s41467-020-18144-x |
[26] |
Wu, C.; DeLong, M.; Vardeny, Z.; Ferraris, J. Synth. Met. 2003, 137, 939.
doi: 10.1016/S0379-6779(02)01192-X |
[27] |
Wu, L.; Casado, S.; Romero, B.; Otón, J. M.; Morgado, J.; Müller, C.; Xia, R.; Cabanillas-Gonzalez, J. Macromolecules 2015, 48, 8765.
doi: 10.1021/acs.macromol.5b02111 |
[28] |
Laquai, F.; Mishra, A. K.; Müllen, K.; Friend, R. H. Adv. Funct. Mater. 2008, 18, 3265.
doi: 10.1002/adfm.v18:20 |
[29] |
Aimono, T.; Kawamura, Y.; Goushi, K.; Yamamoto, H.; Sasabe, H.; Adachi, C. Appl. Phys. Lett. 2005, 86, 071110.
doi: 10.1063/1.1867555 |
[30] |
Sandanayaka, A. S. D.; Matsushima, T.; Bencheikh, F.; Terakawa, S.; Potscavage, W. J.; Qin, C.; Fujihara, T.; Goushi, K.; Ribierre, J.-C.; Adachi, C. Appl. Phys. Express 2019, 12, 061010.
doi: 10.7567/1882-0786/ab1b90 |
[31] |
Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P.; Kim, Y.; Anthopoulos, T. Nat. Mater. 2008, 7, 158.
doi: 10.1038/nmat2102 pmid: 18204451 |
[32] |
Kim, H.; Schulte, N.; Zhou, G.; Müllen, K.; Laquai, F. Adv. Mater. 2011, 23, 894.
doi: 10.1002/adma.v23.7 |
[33] |
Yu, M.-N.; Ou, C.-J.; Liu, B.; Lin, D.-Q.; Liu, Y.-Y.; Xue, W.; Lin, Z.-Q.; Lin, J.-Y.; Qian, Y.; Wang, S.-S.; Cao, H.-T.; Bian, L.-Y.; Xie, L.-H.; Huang, W. Chinese J. Polym. Sci. 2016, 35, 155.
doi: 10.1007/s10118-017-1897-6 |
[34] |
Huo, Y.; Fang, X.; Huang, B.; Zhang, K.; Nie, X.; Zeng, H. Chinese J. Org. Chem. 2012, 32, 1169. (in Chinese)
|
(霍延平, 方小明, 黄宝华, 张焜, 聂晓李, 曾和平, 有机化学, 2012, 32, 1169).
doi: 10.6023/cjoc201204021 |
|
[35] |
Feng, Q.-Y.; Li, B.; Zuo, Z.-Y.; Xie, S.-L.; Yu, M.-N.; Liu, B.; Wei, Y.; Xie, L.-H.; Xia, R.-D.; Huang, W. Chinese J. Polym. Sci. 2018, 37, 11.
doi: 10.1007/s10118-018-2152-5 |
[36] |
Chang, Y.; Cao, H.; Feng, Q.; Wei, Y.; Bian, L.; Ling, H.; Lin, D.; Xie, L.; Huang, W. Sci. Bull. 2021, 66, 4268.
|
[37] |
Xia, R.; Lai, W.-Y.; Levermore, P. A.; Huang, W.; Bradley, D. D. C. Adv. Funct. Mater. 2009, 19, 2844.
doi: 10.1002/adfm.v19:17 |
[38] |
Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D.; Koeberg, M. J. Am. Chem. Soc. 2004, 126, 13695.
doi: 10.1021/ja039228n pmid: 15493927 |
[39] |
Choi, E. Y.; Mazur, L.; Mager, L.; Gwon, M.; Pitrat, D.; Mulatier, J. C.; Monnereau, C.; Fort, A.; Attias, A. J.; Dorkenoo, K.; Kwon, J. E.; Xiao, Y.; Matczyszyn, K.; Samoc, M.; Kim, D. W.; Nakao, A.; Heinrich, B.; Hashizume, D.; Uchiyama, M.; Park, S. Y.; Mathevet, F.; Aoyama, T.; Andraud, C.; Wu, J. W.; Barsella, A.; Ribierre, J. C. Phys. Chem. Chem. Phys. 2014, 16, 16941.
doi: 10.1039/c4cp01134a pmid: 25005146 |
[40] |
Ribierre, J. C.; Zhao, L.; Inoue, M.; Schwartz, P. O.; Kim, J. H.; Yoshida, K.; Sandanayaka, A. S.; Nakanotani, H.; Mager, L.; Mery, S.; Adachi, C. Chem. Commun. 2016, 52, 3103.
doi: 10.1039/C5CC08331A |
[41] |
Zuo, Z.; Ou, C.; Ding, Y.; Zhang, H.; Sun, S.; Xie, L.; Xia, R.; Huang, W. J. Mater. Chem. C 2018, 6, 4501.
doi: 10.1039/C8TC00714D |
[42] |
Xu, W.; Yi, J.; Lai, W.-Y.; Zhao, L.; Zhang, Q.; Hu, W.; Zhang, X.-W.; Jiang, Y.; Liu, L.; Huang, W. Adv. Funct. Mater. 2015, 25, 4617.
doi: 10.1002/adfm.v25.29 |
[43] |
Navarro-Fuster, V.; Calzado, E. M.; Boj, P. G.; Quintana, J. A.; Villalvilla, J. M.; Díaz-García, M. A.; Trabadelo, V.; Juarros, A.; Retolaza, A.; Merino, S. Appl. Phys. Lett. 2010, 97, 171104.
doi: 10.1063/1.3506500 |
[44] |
Gayathri, P.; Karthikeyan, S.; Moon, D.; Anthony, S. P. ChemistrySelect 2019, 4, 3884.
doi: 10.1002/slct.v4.13 |
[45] |
Lin, J.-Y.; Zhu, W.-S.; Liu, F.; Xie, L.-H.; Zhang, L.; Xia, R.; Xing, G.-C.; Huang, W. Macromolecules 2014, 47, 1001.
doi: 10.1021/ma402585n |
[46] |
Lin, D.; Li, Y.; Zhang, H.; Zhang, S.; Gao, Y.; Zhai, T.; Hu, S.; Sheng, C.; Guo, H.; Xu, C.; Wei, Y.; Li, S.; Han, Y.; Feng, Q.; Wang, S.; Xie, L.; Huang, W. Research 2023, 6, 0027.
doi: 10.34133/research.0027 |
[47] |
Yoshida, K.; Gong, J.; Kanibolotsky, A. L.; Skabara, P. J.; Turnbull, G. A.; Samuel, I. D. Nature 2023, 621, 746.
doi: 10.1038/s41586-023-06488-5 |
[48] |
Gan, S.; Hu, S.; Li, X. L.; Zeng, J.; Zhang, D.; Huang, T.; Luo, W.; Zhao, Z.; Duan, L.; Su, S. J.; Tang, B. Z. ACS Appl. Mater. Interfaces 2018, 10, 17327.
doi: 10.1021/acsami.8b05389 |
[49] |
Zhou, Z.; Qiao, C.; Wang, K.; Wang, L.; Liang, J.; Peng, Q.; Wei, Z.; Dong, H.; Zhang, C.; Shuai, Z. Angew. Chem. Int. Ed. 2020, 59, 21677.
doi: 10.1002/anie.v59.48 |
[50] |
Xu, M.; Wang, W.-B.; Bai, L.-B.; Yu, M.-N.; Han, Y.-M.; Lin, J.-Y.; Zhang, X.-W.; Ling, H.-F.; Lin, Z.-Q.; Huang, L.; Xie, L.-H.; Zhao, J.-F.; Wang, J.-P.; Huang, W. J. Mater. Chem. C 2018, 6, 7018.
doi: 10.1039/C8TC01431K |
[51] |
Xu, M.; Wei, C.; Zhang, Y.; Li, H.; Ma, J.; Lin, J.; Wang, S.; Xue, W.; Wei, Q.; Xie, L.; Huang, W. Chin. Chem. Lett. 2024, 35, 108279.
doi: 10.1016/j.cclet.2023.108279 |
[52] |
Giebink, N. C.; Forrest, S. R. Phys. Rev. B 2009, 79, 073302.
doi: 10.1103/PhysRevB.79.073302 |
[53] |
Calzado, E. M.; Villalvilla, J. M.; Boj, P. G.; Quintana, J. A.; Díaz-García, M. A. J. Appl. Phys. 2005, 97, 093103.
doi: 10.1063/1.1886891 |
[54] |
Zhang, Z.-Y.; Xiao, Z.-H.; Zhu, S.; Zhang, Q.; Xia, R.-D.; Peng, J.-B. Acta Phys. Sin. 2023, 72, 214204. (in Chinese)
doi: 10.7498/aps.72.20230773 |
(张志远, 肖子晗, 邾珊, 张琪, 夏瑞东, 彭俊彪, 物理学报, 2023, 72, 214204).
|
[1] | 葛凤洁, 张开志, 曹清鹏, 徐慧, 周涛, 张文浩, 班鑫鑫, 张晓波, 李娜, 朱鹏. 柔性芴基嵌段型延迟荧光二聚体的设计、合成及电致发光性能[J]. 化学学报, 2023, 81(9): 1157-1166. |
[2] | 杨磊, 葛娇阳, 王访丽, 吴汪洋, 郑宗祥, 曹洪涛, 王洲, 冉雪芹, 解令海. 一种基于芴的大环结构的有效降低内重组能的理论研究[J]. 化学学报, 2023, 81(6): 613-619. |
[3] | 刘玉玉, 陈捷锋, 邵振, 魏颖, 凌海峰, 解令海. 基于H型芴基小分子的双极性有机场效应晶体管存储器[J]. 化学学报, 2023, 81(11): 1508-1514. |
[4] | 王玉银, 胡小强, 穆红亮, 夏艳, 迟悦, 简忠保. 空间位阻与氟效应协同增强镍系乙烯聚合[J]. 化学学报, 2022, 80(6): 741-747. |
[5] | 曹洪涛, 侯鹏飞, 曹庆, 李延昂, 汪莎莎, 解令海. 基于氰基化9-苯基芴衍生物的激基复合物发光与性质研究[J]. 化学学报, 2022, 80(11): 1476-1484. |
[6] | 胡鑫明, 钟春晓, 李晓艳, 贾雄, 魏颖, 解令海. 环戊并二噻吩衍生物的合成及其应用[J]. 化学学报, 2021, 79(8): 953-966. |
[7] | 曹洪涛, 李波, 万俊, 余涛, 解令海, 孙辰, 刘玉玉, 王锦, 黄维. 氰基取代的螺芴氧杂蒽衍生物:激基复合物发光与性质调控[J]. 化学学报, 2020, 78(7): 680-687. |
[8] | 李海梅, 罗华健, 肖琦, 杨立云, 黄珊, 刘义. 手性石墨烯量子点与DNA相互作用及其机制研究[J]. 化学学报, 2020, 78(6): 577-586. |
[9] | 任保轶, 依建成, 钟道昆, 赵玉志, 郭闰达, 盛永刚, 孙亚光, 解令海, 黄维. 含螺环位阻铱(III)配合物的共轭结构调控及其电致发光性能研究[J]. 化学学报, 2020, 78(1): 56-62. |
[10] | 薄一凡, 刘玉玉, 常永正, 李银祥, 张效霏, 宋春元, 许卫锋, 曹洪涛, 黄维. 环状芴基张力半导体拉曼光谱理论与实验研究[J]. 化学学报, 2019, 77(5): 442-446. |
[11] | 王明, 姜雪峰. 二芳基碘嗡盐参与的CO/I交换策略构建9-芴酮[J]. 化学学报, 2018, 76(5): 377-381. |
[12] | 于森, 徐雍捷, 蒋加兴, 任世杰. 芴基共价三嗪骨架聚合物的室温合成和取代基效应研究[J]. 化学学报, 2015, 73(6): 629-633. |
[13] | 李昱达, 张恒, 王迅昶, 汪锋, 夏养君. 新型噻咯共轭聚合物的合成及其光伏性能[J]. 化学学报, 2015, 73(10): 1055-1060. |
[14] | 韩立志, 王卓, 华英杰, 任爱民, 刘艳玲*, 刘朋军. 9,9-二-(3-(9-苯咔唑基))-2,7-芘基芴的光电性质[J]. 化学学报, 2012, 70(05): 579-584 . |
[15] | 刘天西, 杨贵忠, 韦春. 侧链取代的芴苯共聚物的光电性质及其溶剂化效应研究[J]. 化学学报, 2011, 69(12): 1415-1424. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||