化学学报 ›› 2025, Vol. 83 ›› Issue (1): 60-71.DOI: 10.6023/A24080248 上一篇    下一篇

研究论文

局域表面等离激元共振在单分子灵敏度检测中的应用及进展

罗成璐a, 田梦a, 崔宇凡a, 马兴毅a,b,c,*()   

  1. a 哈尔滨工业大学(深圳) 医学工程与数字健康学院/理学院 深圳 518055
    b 胞芯国际 济南 250117
    c 百吉林生命科学研究院 烟台 264003
  • 投稿日期:2024-08-21 发布日期:2024-11-08
  • 作者简介:

    罗成璐, 哈尔滨工业大学(深圳)在读硕士, 主要研究方向为纳米材料的合成、设计及其在生物医学领域上的应用.

    田梦, 哈尔滨工业大学(深圳)材料与化工在读博士, 主要从事新型纳米材料合成、精密生物传感方向的研究.

    崔宇凡, 毕业于英国帝国理工学院, 目前于哈尔滨工业大学(深圳)攻读博士学位, 师从马兴毅教授, 从事纳米颗粒和等离子纳米孔的结合研究, 以改进单分子生物传感纳米材料的设计和合成.

    马兴毅, 先后毕业于哈尔滨工业大学、成均馆大学和高丽大学, 现任哈尔滨工业大学(深圳)教授, 纳米医学与交叉科学课题组PI, 在生物医学工程、材料与化工、海洋科学等学科招收博士. 目前研究方向为: (1)生物技术→工程技术: 利用生物技术和生物分子设计制备高性能纳米材料, 将新材料用于生物芯片、传感系统等工程技术创新; (2)工程技术→医养健康: 利用纳米技术和纳米材料开展生物医学研究, 将新细胞用于生物发酵, 将新分子用于新药研发, 将新技术用于健康诊断和治疗.

  • 基金资助:
    国家自然科学基金(22371059); 国家自然科学基金(82302346); 国家自然科学基金(82411540243); 深圳市科技计划和医学研究专项(JCYJ20210324132815037); 深圳市科技计划和医学研究专项(GXWD20220818171934001); 深圳市科技计划和医学研究专项(GJHZ20220913143010018); 深圳市科技计划和医学研究专项(D2401024); 广东省基础与应用基础研究基金(2022A1515220158); 广东省基础与应用基础研究基金(2024A1515010898); 广东省教育厅(2021KQNCX276); 广东省教育厅(2022ZDZX2065); 广东省教育厅(2023KTSCX225); 中央高校基本科研业务费专项基金(HIT.OCEF.2022040); 山东省生化分析重点实验室开放课题(SKLBA2302); 相关人才计划(2021QN02Y120); 相关人才计划(QJD2002017); 相关人才计划(TSCY202006001); 相关人才计划(2022HWYQ097)

Applications and Progress of Localized Surface Plasmon Resonance in Detections with Single-molecule Sensitivity

Chenglu Luoa, Meng Tiana, Yufan Cuia, Xingyi Maa,b,c()   

  1. a School of Biomedical Engineering and Digital Health & School of Science, Harbin Institute of Technology, Shenzhen 518055, China
    b Biosen International, Jinan 250117, China
    c Briteley Institute of Life Sciences, Yantai 264003, China
  • Received:2024-08-21 Published:2024-11-08
  • Contact: *E-mail: maxy@hit.edu.cn
  • Supported by:
    National Natural Science Foundations of China(22371059); National Natural Science Foundations of China(82302346); National Natural Science Foundations of China(82411540243); Shenzhen Science and Technology Programs and Medicine Research Fund(JCYJ20210324132815037); Shenzhen Science and Technology Programs and Medicine Research Fund(GXWD20220818171934001); Shenzhen Science and Technology Programs and Medicine Research Fund(GJHZ20220913143010018); Shenzhen Science and Technology Programs and Medicine Research Fund(D2401024); Guangdong Basic and Applied Basic Research Foundations(2022A1515220158); Guangdong Basic and Applied Basic Research Foundations(2024A1515010898); Department of Education of Guangdong(2021KQNCX276); Department of Education of Guangdong(2022ZDZX2065); Department of Education of Guangdong(2023KTSCX225); Fundamental Research Funds for the Central Universities(HIT.OCEF.2022040); Shandong Key Laboratory of Biochemical Analysis(SKLBA2302); Talents Programs(2021QN02Y120); Talents Programs(QJD2002017); Talents Programs(TSCY202006001); Talents Programs(2022HWYQ097)

局域表面等离激元共振(LSPR), 是贵金属纳米材料产生的独特光学特性, 且备受广大研究者们关注. 将其与单分子识别检测策略结合, 可在分子水平上为光与物质之间的相互作用提供良好的研究体系. 因此, 本综述从LSPR传感策略出发, 介绍其基本原理并阐明了传感性能的影响因素, 进而探讨了高灵敏光学传感技术的设计方案, 综合分析了不同设计方案在单分子灵敏度检测中的前沿应用, 总结了技术发展趋势. 本综述可为研究者们开发和设计LSPR光学生物或化学传感器提供新思路, 并有效地提升单分子灵敏度检测的应用潜力.

关键词: 局域表面等离激元共振, 纳米金/银, 单分子灵敏度检测, 光学传感, 结构设计

Localized surface plasmon resonance (LSPR) is a unique optical property of noble-metal nanomaterials, such as gold and silver, which can be used to achieve increasingly more applications in human health due to its sensitivity to changes in the refractive index and others of the surrounding environment and has therefore attracted wide attention from researchers. In addition to this, the single molecule is the smallest unit to be studied in the process of life activity, and the study of it presents a challenge to the limit of detection technology. Therefore, the combination of LSPR with the detection strategies of single-molecule recognition can provide a good system for studying the interaction between light and matter at the molecular level, which has extraordinary scientific significance and value for the study of intermolecular affinity, molecular dynamics, and pharmacokinetics, etc. Based on the above background, starting from the LSPR sensing strategies, we first introduce its basic principle and explain the factors affecting the sensing performance, and then discuss the design scheme of highly sensitive optical sensing technology, which can be controlled by the materials, geometric shape and surrounding environment of metal nanoparticles to promote the generation of hot spots, the regulation of their distribution and density, and the enhancement of the electromagnetic field intensity. More refined optical sensing strategies can be devised and optimized for high-sensitivity detection by capitalizing on highly sensitive sensing substrates to magnify the minute variations in the target molecules and ultimately manifest the alterations in the molecular recognition process in the form of optical signals. Finally, the advanced applications of different design schemes in detections with single-molecule sensitivity (DSMS) are analyzed comprehensively, and the development trends of this technology are summarized. Hopefully, this paper can provide new ideas for researchers to develop and design LSPR optical biological or chemical sensors, and effectively optimize and expand the applications of LSPR in DSMS.

Key words: localized surface plasmon resonance, gold/silver nanoparticles, detections with single-molecule sensitivity, optical sensing, structural design