化学学报 ›› 2014, Vol. 72 ›› Issue (5): 537-551.DOI: 10.6023/A14010007 上一篇 下一篇
综述
万洋, 郑荞佶, 赁敦敏
投稿日期:
2014-01-03
发布日期:
2014-04-18
通讯作者:
赁敦敏
E-mail:ddmd222@sicnu.edu.cn
基金资助:
项目受四川师范大学研究生优秀学位论文培育基金(No. XYZ2013-14-38)资助.
Wan Yang, Zheng Qiaoji, Lin Dunmin
Received:
2014-01-03
Published:
2014-04-18
Supported by:
Project supported by the Sichuan Normal University Graduate Dissertation Cultivation Fund (No. XYZ2013-14-38).
文章分享
LiMnPO4具有环境友好、价格低廉及能量密度高(~700 Wh·kg-1)等优点,同时高强度的P—O共价键组成的PO4四面体构成了LiMnPO4稳定的骨架,使得LiMnPO4具有稳定的晶体结构,保证了LiMnPO4正极材料的安全性. 因此LiMnPO4被认为是具发展潜质的下一代候选正极材料之一,并有望应用到电动车(EV)领域. 本文系统地介绍了LiMnPO4的结构与性能的关系以及导电机制,并比较了LiMnPO4和LiFePO4动力学行为的异同;同时阐述了近年来关于LiMnPO4一些富有争议性的问题,如LiMnPO4中是否存在Jahn-Teller效应及LiMnPO4的热稳定性等. 此外,LiMnPO4改性措施比如形貌控制、表面改性和掺杂也会在文中得到详细评述.
万洋, 郑荞佶, 赁敦敏. 锂离子电池正极材料磷酸锰锂研究进展[J]. 化学学报, 2014, 72(5): 537-551.
Wan Yang, Zheng Qiaoji, Lin Dunmin. Recent Development of LiMnPO4 as Cathode Materials of Lithium-ion Batteries[J]. Acta Chimica Sinica, 2014, 72(5): 537-551.
[1] Du, K.; Zhou, W.; Hu, G.; Peng, Z.; Jiang, Q. Acta Chim. Sinica 2010, 68, 1391. (杜柯, 周伟瑛, 胡国荣, 彭忠东, 蒋庆来, 化学学报, 2010, 68, 1391.)[2] Manthiram, A. Electrochem. Soc. Interface 2009, 18, 44.[3] Li, W.; Reimers, J. N.; Dahn, J. R. Phys. Rev. B 1992, 46, 3236.[4] Sasaki, T.; Nonaka, T.; Oka, H.; Okuda, C.; Itou, Y.; Kondo, Y.; Takeuchi, Y.; Ukyo, Y.; Tatsumi, K.; Muto, S. J. Electrochem. Soc. 2009, 156, A289.[5] Gummow, R. J.; Liles, D. C.; Thackeray, M. M. Mater. Res. Bull. 1993, 28, 1249.[6] Park, O. K.; Cho, Y.; Lee, S.; Yoo, H.-C.; Song, H.-K.; Cho, J. Energy Environ. Sci. 2011, 4, 1621.[7] Choi, S.; Manthiram, A. J. Electrochem. Soc. 2002, 149, A162.[8] Matsushita, Y.; Ueda, H.; Ueda, Y. Nat. Mater. 2005, 4, 845.[9] Dimesso, L.; Spanheimer, C.; Jaegermann, W. J. Power Sources 2013, 243, 668.[10] Hautier, G.; Jain, A.; Ong, S. P.; Kang, B.; Moore, C.; Doe, R.; Ceder, G. Chem. Mater. 2011, 23, 3495.[11] Meligrana, G.; Di Lupo, F.; Ferrari, S.; Destro, M.; Bodoardo, S.; Garino, N.; Gerbaldi, C. Electrochim. Acta 2013, 105, 99.[12] Yonemura, M.; Yamada, A.; Takei, Y.; Sonoyama, N.; Kanno, R. J. Electrochem. Soc. 2004, 151, A1352.[13] Pieczonka, N. P. W.; Liu, Z.; Huq, A.; Kim, J.-H. J. Power Sources 2012, 230, 122.[14] Shang, S. L.; Wang, Y.; Mei, Z. G.; Hui, X. D.; Liu, Z. K. J. Mater. Chem. 2012, 22, 1142.[15] Yao, J.; Bewlay, S.; Konstantionv, K.; Drozd, V. A.; Liu, R. S.; Wang, X. L.; Liu, H. K.; Wang, G. X. J. Alloys Compd. 2006, 425, 362.[16] Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc. 2001, 148, A2249.[17] Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1609.[18] Maier, J.; Amin, R. J. Electrochem. Soc. 2008, 155, A339.[19] Badi, S. P.; Wagemaker, M.; Ellis, B. L.; Singh, D. P.; Borghols, W. J. H.; Kan, W. H.; Ryan, D. H.; Mulder, F. M.; Nazar, L. F. J. Mater. Chem. 2011, 21, 10085.[20] Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Chem. Mater. 2005, 17, 5085.[21] Chung, S. Y.; Choi, S. Y.; Yamamoto, T.; Ikuhara, Y. Phys. Rev. Lett. 2008, 100, 125502.[22] Bridges, C. A.; Harrison, K.; Unocic, R. R.; Idrobo, J.-C.; Paranthaman, M. P.; Manthiram, A. J. Solid State Chem. 2013, 205, 197.[23] Fisher, C. A. J.; Hart-Prieto, V. M.; Islam, M. S. Chem. Mater. 2008, 20, 5907.[24] Gardine, G. R.; Islam, M. S. Chem. Mater. 2009, 22, 1242.[25] Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nature Mater. 2002, 1, 123.[26] Omenya, F.; Chernova, N. A.; Upreti, S.; Zavalij, P. Y.; Nam, K.-W.; Yang, X.-Q.; Whittingham, M. S. Chem. Mater. 2011, 23, 4733.[27] Ni, J.; Gao, L. J. Power Sources 2011, 196, 6498.[28] Zhang, Y.; Zhao, Y. Int. J. Electrochem. Sci. 2012, 7, 5367.[29] Shannon, R. D. Acta Crystallogr. Sect. A 1976, 32, 751.[30] Chung, S. Y.; Choi, S. Y.; Lee, S.; Ikuhara, Y. Phys. Rev. Lett. 2012, 108, 195501.[31] Fang, H.; Pan, Z.; Li, L.; Yang, Y.; Yan, G.; Li, G.; Wei, S. Electrochem. Commun. 2008, 10, 1071.[32] Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.[33] Chen, G.; Richardson, T. J. J. Electrochem. Soc. 2009, 156, A756.[34] Yamada, A.; Kudo, Y.; Liu, K. Y. J. Electrochem. Soc. 2001, 148, A1153.[35] Yamada, A.; Kudo, Y.; Liu, K. Y. J. Electrochem. Soc. 2001, 148, A747.[36] Kim, J.; Park, K. Y.; Park, I.; Yoo, J.-K.; Seo, D.-W.; Kim, S.-W.; Kang, K. J. Electrochem. Soc. 2011, 159, A55.[37] Molenda, J.; Ojczyk, W.; ?wierczek, K.; Zaj?c, W.; Krok, F.; Dygas, J.; Liu, R.-S. Solid State Ionics 2006, 177, 2617.[38] Dong, Y.; Wang, L.; Zhang, S.; Zhao, Y.; Zhou, J.; Xie, H.; Goodenough, J. B. J. Power Sources 2012, 215, 116.[39] Dinh, H. C.; Mho, S.; Kang, Y.; Yeo, I.-H. J. Power Sources 2013, 244, 189.[40] Ouyang, C. Y.; Shi, S. Q.; Lei, M. S. J. Alloys Compd. 2009, 474, 370.[41] Wang, S.; Yang, J.; Wu, X.; Li, Y.; Gong, Z.; Wen, W.; Lin, M.; Yang, J.; Yang, Y. J. Power Sources 2014, 245, 570.[42] Marianetti, C. A.; Morgan, D.; Ceder, G. Phys. Rev. B 2001, 63, 224304.[43] Arroyo y de Dompablo, M. E.; Marianetti, C.; Van der Ven, A.; Ceder, G. Phys. Rev. B 2001, 63, 144107.[44] Li, Y. X.; Gong, Z. L.; Yang, Y. J. Power Sources 2007, 174, 528.[45] Yamada, A.; Chung, S. C. J. Electrochem. Soc. 2001, 148, A960.[46] Delacourt, C.; Laffont, L.; Bouchet, R.; Wurm, C.; Leriche, J.-B.; Morcrette, M.; Tarascon, J.-M.; Masquelier, C. J. Electrochem. Soc. 2005, 152, A913.[47] Chen, Y. C.; Chen, J. M.; Hsu, C. H.; Lee, J.-F.; Yeh, J.-W.; Shih, H. C. Solid State Ionics 2009, 180, 1215.[48] Damen, L.; De Giorgio, F.; Monaco, S.; Veronesi, F.; Mastragostino, M. J. Power Sources 2012, 218, 250.[49] Qin, L.; Xia, Y.; Qiu, B.; Cao, H.; Liu, Y.; Liu, Z. J. Power Sources 2013, 239, 144.[50] Liu, J.; Liu, X.; Huang, T.; Yu, A. J. Power Sources 2013, 229, 203.[51] Minakshi, M.; Kandhasamy, S. Curr. Opin. Solid State Mater. Sci. 2012, 16, 163.[52] Piper, L. F. J.; Quackenbush, N.; Sallis, S.; Scanlon, D. O.; Watson, G. W.; Nam, K.-W.; Yang, X.-Q.; Smith, K. E.; Omenya, F.; Chernova, N. A.; Whittingham, M. S. J. Phys. Chem. C 2013, 117, 10383.[53] Nie, Z. X.; Ouyang, C. Y.; Chen, J. Z.; Zhong, Z. Y.; Du, Y. L.; Liu, D. S.; Shi, S. Q.; Lei, M. S. Solid State Commun. 2010, 150, 40.[54] Asari, Y.; Suwa, Y.; Hamada, T. Phys. Rev. B 2011, 84, 134113.[55] Wang, D.; Buqa, H.; Crouzet, M.; Deghenghi, G.; Drezen, T.; Exnar, I.; Kwon, N.-H.; Miners, J. H.; Poletto, L.; Grätzel, M. J. Power Sources 2009, 189, 624.[56] Yamada, A.; Takei, Y.; Koizumi, H.; Sonoyama, N.; Kanno, R. Chem. Mater. 2006, 18, 804.[57] Mishima, Y.; Hojo, T.; Nishio, T.; Sadamura, H.; Oyama, N.; Moriyoshi, C.; Kuroiwa, Y. J. Phys. Chem. C 2013, 117, 2608.[58] Dahn, J. R.; Fuller, E. W.; Obrovac, M.; von Sacken, U. Solid State Ionics 1994, 69, 265.[59] Balakrishnan, P. G.; Ramesh, R.; Prem Kumar, T. J. Power Sources 2006, 155, 401.[60] Chen, G.; Richardson, T. J. J. Power Sources 2010, 195, 1221.[61] Li, G.; Azuma, H.; Tohda, M. Electrochem. Solid-State Lett. 2002, 5, A135.[62] Delacourt, C.; Poizot, P.; Tarascon, J.-M.; Masquelier, C. Nat. Mater. 2005, 4, 254.[63] Ong, S. P.; Jain, A.; Hautier, G.; Kang, B.; Ceder, G. Electrochem. Commun. 2010, 12, 427.[64] Kim, J.; Park, K. Y.; Park, I.;Yoo, J.-K.; Hong, J.; Kang, K. J. Mater. Chem. 2012, 22, 11964.[65] Choi, D.; Xiao, J.; Choi, Y. J.; Hardy, J. S.; Vijayakumar, M.; Bhuvaneswari, M. S.; Liu, J.; Xu, W.; Wang, W.; Yang, Z.; Graff, G. L.; Zhang, J.-G. Energy Environ. Sci. 2011, 4, 4560.[66] Kim, S. W.; Kim, J.; Gwon, H.; Kang, K. J. Electrochem. Soc. 2009, 156, A635.[67] Martha, S. K.; Markovsky, B.; Grinblat, J.; Gofer, Y.; Haik, O.; Zinigrad, E.; Aurbach, D.; Drezen, T.; Wang, D.; Deghenghi, G.; Exnar, I. J. Electrochem. Soc. 2009, 156, A541.[68] Martha, S. K.; Haik, O.; Zinigrad, E.; Exnar, I.; Drezen, T.; Miners, J. H.; Aurbach, D. J. Electrochem. Soc. 2011, 158, A1115.[69] Morgan, D.; Van der Ven, A.; Ceder, G. Electrochem. Solid-State Lett. 2004, 7, A30.[70] Dinh, V. A.; Nara, J.; Ohno, T. Appl. Phys. Express. 2012, 5, 5801.[71] Yu, J.; Rosso, K. M.; Liu, J. J. Mater. Chem. C 2011, 115, 25001.[72] Johannes, M. D.; Hoang, K.; Allen, J. L.; Gaskell, K. Phys. Rev. B 2012, 85, 115106.[73] Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C. Electrochem. Solid-State Lett. 2006, 9, A352.[74] Zaghib, K.; Guerfi, A.; Hovington, P.; Vijh, A.; Trudeau, M.; Mauger, A.; Goodenough, J. B.; Julien, C. M. J. Power Sources 2013, 232, 357.[75] Drezen, T.; Kwon, N. H.; Bowen, P.; Teerlinck, I.; Isono, M.; Exnar, I. J. Power Sources 2007, 174, 949.[76] Yoshida, J.; Stark, M.; Holzbock, J.; Hüsing, N.; Nakanishi, S.; Iba, H.; Abe, H.; Naito, M. J. Power Sources 2013, 226, 122.[77] Yang, W.-C.; Bi, Y.-J.; Yang, B.-C.; Wang, D.-Y.; Shi, S.-Q. Acta Phys.-Chim. Sin. 2014, 30, 460. (杨文超, 毕玉敬, 杨邦成, 王德宇, 施思齐, 物理化学学报, 2014, 30, 460.)[78] Kim, T. H.; Park, H. S.; Lee, M. H.; Lee, S.-Y.; Song, H.-K. J. Power Sources 2012, 210, 1.[79] Doi, T.; Yatomi, S.; Kida, T.; Okada, S.; Yamaki, J. Cryst. Growth Des. 2009, 9, 4990.[80] Choi, D.; Wang, D.; Bae, I. T.; Xiao, J.; Nie, Z.; Wang, W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J.-G.; Graff, G. L.; Yang, Z.; Liu, J. Nano Lett. 2010, 10, 2799.[81] Pan, X. L.; Xu, C. Y.; Hong, D.; Fang, H.-T.; Zhen, L. Electrochim. Acta 2013, 87, 303.[82] Devaraju, M. K.; Honma, I. Adv. Eng. Mater. 2012, 2, 284.[83] Ramar, V.; Saravanan, K.; Gajjela, S. R.; Hariharan, S.; Balaya, P. Electrochim. Acta 2013, 105, 496.[84] Kang, B.; Ceder, G. Nature 2009, 458, 190.[85] Xiao, J.; Chernova, N. A.; Upreti, S.; Chen, X.; Li, Z.; Deng, Z.; Choi, D.; Xu, W.; Nie, Z.; Graff, G. L.; Liu, J.; Wittingham, M. S.; Zhang, J.-G. Phys. Chem. Chem. Phys. 2011, 13, 18099.[86] Kang, B.; Ceder, G. J. Electrochem. Soc. 2010, 157, A808.[87] Liu, S.; Fang, H.; Yang, B.; Yao, Y.; Ma, W.; Dai, Y. J. Power Sources 2013, 230, 267.[88] Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. J. Mater. Chem. A 2013, 1, 3158.[89] Kumar, P. R.; Venkateswarlu, M.; Misra, M.; Mohanty, A. K.; Satyanarayana, N. J. Electrochem. Soc. 2011, 158, A227.[90] Wang, H.; Yang, Y.; Liang, Y.; Cui, L.-F.; Casalongue, H. S.; Li, Y.; Hong, G.; Cui, Y.; Dai, H. Angew. Chem. Int. Ed. 2011, 123, 7502.[91] Li, H.; Zhou, H. Chem. Commun. 2012, 48, 1201.[92] Oh, S. M.; Oh, S. W.; Yoon, C. S.; Scrosati, B.; Amine, K.; Sun, Y.-K. Adv. Funct. Mater. 2010, 20, 3260.[93] Li, L.; Liu, J.; Chen, L.; Xu, H.; Yang, J.; Qian, Y. RSC Adv. 2013, 3, 6847.[94] Mizuno, Y.; Kotobuki, M.; Munakata, H.; Kanamura, K. J. Ceram. Soc. Jpn. 2009, 117, 1225.[95] Bakenov, Z.; Taniguchi, I. J. Power Sources 2010, 195, 7445.[96] Wang, F.; Yang, J.; Gao, P.; Nuli, Y.; Wang, J. J. Power Sources 2011, 196, 10258.[97] Zaghib, K.; Trudeau, M.; Guerfi, A.; Trottier, J.; Mauger, A.; Veillette, R.; Julien, C. M. J. Power Sources 2012, 204, 177.[98] Oh, S. M.; Sun, Y. K. J. Power Sources 2013, 244, 663.[99] Liu, X.-M.; Huang, Z.; Oh, S.; Zhang, B.; Ma, P.-C.; Yuen, M. M. F.; Kim, J.-K. 2012, 72, 121.[100] Dimesso, L.; Förster, C.; Jaegermann, W.; Khanderi, J. P.; Tempel, H.; Popp, A.; Engstler, J.; Schneider, J. J.; Sarapulova, A.; Mikhailova, D.; Schmitt, L. A.; Oswald, S.; Ehrenberg, H. Chem. Soc. Rev. 2012, 41, 5068.[101] Zhao, D.; Li, Z.; Liu, L.; Zhang, Y.; Ren, D.; Li, J. Acta Chim. Sinica 2014, 72, 185. (赵冬梅, 李振伟, 刘领第, 张艳红, 任德财, 李坚, 化学学报, 2014, 72, 185.)[102] Kucinskis, G.; Bajars, G.; Kleperis, J. J. Power Sources 2013, 240, 66.[103] Dettlaff-Weglikowska, U.; Sato, N.; Yoshida, J.; Roth, S. Phys. Status Solidi B 2009, 246, 2482.[104] Nie, P.; Shen, L.-F.; Chen, L.; Su, X.-F.; Zhang, X.-G.; Li, H.-S. Acta Phys.-Chim. Sin. 2011, 27, 2123. (聂平, 申来法, 陈琳, 苏晓飞, 张校刚, 李洪森, 物理化学学报, 2011, 27, 2123.)[105] Filkusová, M.; Fedorková, A.; Oriňáková, R.; Oriňák, A.; Nováková, Z.; Škantárová, L. New Carbon Mater. 2013, 28, 1.[106] Ni, J.; Han, Y.; Gao, L.; Lu, L. Electrochem. Commun. 2013, 31, 84.[107] Vadivel Murugan, A.; Muraliganth, T.; Ferreira, P. J.; Manthiram, A. Inorg. Chem. 2009, 48, 946.[108] Zong, J.; Liu, X. Electrochim. Acta 2014, 116, 9.[109] Qin, Z.; Zhou, X.; Xia, Y.; Tang, C.; Liu, Z. J. Mater. Chem. 2012, 22, 21144.[110] Su, C.; Bu, X.; Xu, L.; Liu, J.; Zhang, C. Electrochim. Acta 2012, 64, 190.[111] Zhang, L.; Wang, S.; Cai, D.; Lian, P.; Zhu, X.; Yang, W.; Wang, H. Electrochim. Acta 2013, 91, 108.[112] Kavan, L.; Bacsa, R.; Tunckol, M.; Serp, P.; Zakeeruddin, S. M.; Formal, F. L.; Zukalova, M.; Graetzel, M. J. Power Sources 2010, 195, 5360.[113] Yang, G.; Ni, H.; Liu, H.; Gao, P.; Ji, H.; Roy, S.; Pinto, J.; Jiang, X. J. Power Sources 2011, 196, 4747.[114] Lee, J. W.; Park, M. S.; Anass, B.; Park, J.-H.; Paik, M.-S.; Doo, S.-G. Electrochim. Acta 2010, 55, 4162.[115] Clemens, O.; Bauer, M.; Haberkorn, R.; Springborg, M.; Beck, H. P. Chem. Mater. 2012, 24, 4717.[116] Wang, L.; Zhang, L.; Li, J.; Gao, J.; Jiang, C.; He, X. Int. J. Electrochem. Sci. 2012, 7, 3362.[117] Kope¢, M.; Yamada, A.; Kobayashi, G.; Nishimura, S.; Kanno, R.; Mauger, A.; Gendron, F.; Julien, C. M. J. Power Sources 2009, 189, 1154.[118] Li, G.; Azuma, H.; Tohda, M. J. Electrochem. Soc. 2002, 149, A743.[119] Chen, L.; Yuan, Y. Q.; Feng, X.; Li, M.-W. J. Power Sources 2012, 214, 344.[120] von Hagen, R.; Lorrmann, H.; Möller, K. C.; Mathur, S. Adv. Eng. Mater. 2012, 2, 553.[121] Sun, Y. K.; Oh, S. M.; Park, H. K.; Scrosati, B. Adv. Mater. 2011, 23, 5050.[122] Oh, S. M.; Jung, H. G.; Yoon, C. S.; Myung, S.-T.; Chen, Z.; Amine, K.; Sun, Y.-K. J. Power Sources 2011, 196, 6924.[123] Pivko, M.; Bele, M.; Tchernychova, E.; Logar, N. Z.; Dominko, R.; Gaberscek, M. Chem. Mater. 2012, 24, 1041.[124] Wang, F.; Yang, J.; NuLi, Y.; Wang, J. Electrochim. Acta 2013, 103, 96.[125] Ar?on, D.; Zorko, A.; Dominko, R.; Jagli?i?, Z. J. Phys.: Condens. Matter 2004, 16, 5531.[126] Ar?on, D.; Zorko, A.; Cevc, P.; Dominko, R.; Bele, M.; Jamnik, J.; Jagli?i?, Z.; Golosovsky, I. J. Phys. Chem. Solids 2004, 65, 1773.[127] Li, B. Z.; Wang, Y.; Xue, L.; Li, X. P.; Li, W. S. J. Power Sources 2013, 232, 12.[128] Su, K.; Liu, F.; Chen, J. J. Power Sources 2013, 232, 234.Xu, T.; Wang, L.; Li, S.; Ma, C. Acta Chim. Sinica 2009, 67, 2275. (徐土根, 王连邦, 李晟, 马淳安, 化学学报, 2009, 67, 2275.) |
[1] | 杨娜, 马建中, 石佳博, 郭旭. 层状复合氢氧化物的有机改性方法及应用研究进展[J]. 化学学报, 2023, 81(2): 207-216. |
[2] | 查汉, 房进, 闫翎鹏, 杨永珍, 马昌期. 有机太阳能电池热失效机制及三元共混提升其热稳定性研究进展[J]. 化学学报, 2023, 81(2): 131-145. |
[3] | 刘彦甫, 李世麟, 荆亚楠, 肖林格, 周惠琼. 有机太阳能电池性能衰减机理研究进展[J]. 化学学报, 2022, 80(7): 993-1009. |
[4] | Jamshid Kadirkhanov, 钟峰, 张文建, 洪春雁. 聚合诱导自组装制备多腔室囊泡以及成核链段中亲溶剂片段的影响[J]. 化学学报, 2022, 80(7): 913-920. |
[5] | 陆远, 王继芬, 谢华清. LiMn2O4尖晶石氧化物的低指数表面结构优化及表面能的第一性原理研究[J]. 化学学报, 2021, 79(8): 1058-1064. |
[6] | 苗俊辉, 丁自成, 刘俊, 王利祥. 小分子给体/高分子受体型有机太阳能电池研究进展[J]. 化学学报, 2021, 79(5): 545-556. |
[7] | 梁其梅, 郭昱娇, 郭俊明, 向明武, 刘晓芳, 白玮, 宁平. 亚微米去顶角八面体LiNi0.08Mn1.92O4正极材料制备及高温电化学性能[J]. 化学学报, 2021, 79(12): 1526-1533. |
[8] | 张宇, 王世兴, 杨蕊, 戴腾远, 张楠, 席聘贤, 严纯华. Co9S8/MoS2异质结构的构筑及电催化析氢性能研究[J]. 化学学报, 2020, 78(12): 1455-1460. |
[9] | 陈甜, 杨英, 赵婉玉, 潘德群, 朱从潭, 林飞宇, 郭学益. 溶剂热法制备纳米氧化镍及其表征[J]. 化学学报, 2019, 77(5): 447-454. |
[10] | 马慧, 马巍, 杨哲曜, 丁志峰, 龙亿涛. 纳米电极稳态电流表征的探讨[J]. 化学学报, 2017, 75(11): 1082-1086. |
[11] | 闫卓君, 元野, 刘佳, 李勤, 阮南中, 张大明, 田宇阳, 朱广山. 定向合成带电荷多孔芳香骨架材料用于碘单质的捕获和释放[J]. 化学学报, 2016, 74(1): 67-73. |
[12] | 钮东方, 丁勇, 马智兴, 王明辉, 刘洲, 张博文, 张新胜. 纳米碳纤维的表面改性对水电解析氢反应催化活性的影响[J]. 化学学报, 2015, 73(7): 729-734. |
[13] | 程沛, 史钦钦, 占肖卫. 基于聚合物给体/有机小分子/富勒烯受体的三元共混有机太阳能电池[J]. 化学学报, 2015, 73(3): 252-256. |
[14] | 薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛. 钙钛矿太阳电池研究进展:薄膜形貌控制与界面工程[J]. 化学学报, 2015, 73(3): 179-192. |
[15] | 邵志鹏, 潘旭, 张旭辉, 叶加久, 朱梁正, 李毅, 马艳梅, 黄阳, 朱俊, 胡林华, 孔凡太, 戴松元. 薄膜结构及形貌对钙钛矿电池性能的影响[J]. 化学学报, 2015, 73(3): 267-271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||