化学学报 ›› 2025, Vol. 83 ›› Issue (9): 1089-1102.DOI: 10.6023/A25050179 上一篇    下一篇

综述

纳米孔DNA单分子测序

白宏震, 谭皓璟, 冯建东*()   

  1. 浙江大学 化学系 物理生物学实验室 杭州 310058
  • 投稿日期:2025-05-19 发布日期:2025-07-09
  • 作者简介:

    白宏震, 浙江大学化学系副研究员, 主要从事功能高分子、纳米材料和单分子测量等方面研究. 发展面向生命科学和精准医学的分子传感技术和药物输送系统, 实现对生物过程和疾病通路的解析及调控.

    谭皓璟, 浙江大学化学系博士研究生, 研究内容为基于纳米孔的单分子测量以及纳米尺度流体传输现象和物理机制探索.
    冯建东, 浙江大学求是特聘教授, 化学、光学工程博导, 主要从事单分子操控、测量、超分辨成像方法和科学装置研究. 发展单分子电学、光学、化学、量子测量等实验手段, 研制精密测量科学装置, 实现面向物质、信息极限的分子测量和数字化认知.

    “中国青年化学家”专辑.

  • 基金资助:
    国家重点研发计划(2020YFA0211200); 国家自然科学基金面上(22175153); 新基石科学基金会科学探索奖资助

Nanopore-based Single-molecule DNA Sequencing

Hongzhen Bai, Haojing Tan, Jiandong Feng*()   

  1. Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310058
  • Received:2025-05-19 Published:2025-07-09
  • Contact: * E-mail: jiandong.feng@zju.edu.cn
  • About author:

    For the VSI “Rising Stars in Chemistry”.

  • Supported by:
    National Key R&D Program of China(2020YFA0211200); National Natural Science Foundation of China(22175153); New Cornerstone Science Foundation through the XPLORER Prize

纳米孔测序技术作为一种革命性的单分子测序方法, 利用限域纳米孔与DNA分子的非共价相互作用解析碱基信息, 进而从单分子水平读取DNA序列. 这种直接的物理读取方法具有无标记、长读长、高通量、低成本和实时检测等独特优势, 在基因组学、医学研究等领域展现出巨大应用潜力. 本文系统性综述了纳米孔单分子测序的原理与发展历程, 重点阐述了纳米孔测量空间分辨率提升策略、基于马达蛋白的测序时间分辨率控制策略、纳米孔测序系统的构建, 并探讨这些关键因素之间的相互关系及影响. 在此基础上, 讨论纳米孔测序技术的应用现状与发展趋势.

关键词: 单分子测量, 生物纳米孔, DNA测序, 基因组学

As a revolutionary single-molecule sequencing technology, nanopore DNA sequencing technology leverages the non-covalent interactions between nano-confined sensing interfaces and DNA molecules to parse the base information, then reading the DNA sequence at the single-molecule level. This physical method for direct reading of DNA offers unique advantages such as label-free, long reads, high-throughput, cost-effective, and real-time detection, demonstrating immense potential in genomics research and medicine science. This review summarizes the principles and development history of biological nanopore-based single-molecule DNA sequencing, focusing on key aspects including the engineering of biological nanopores for spatial resolution improvement, motor protein-based strategies of DNA translocation for time resolution control, and the construction of nanopore sequencing systems, then going deep into the underlying connection of these factors. Based on these, the current application and future development of nanopore-based single-molecule sequencing technology has been discussed.

Key words: single-molecule measurement, biological nanopores, DNA sequencing, genomics