化学学报 ›› 2025, Vol. 83 ›› Issue (10): 1197-1207.DOI: 10.6023/A25050198 上一篇    下一篇

研究展望

基于窄谱吸收材料的有机光电探测器

高蓉蓉, 吕昊汉, 王小野*()   

  1. 南开大学化学学院 元素有机化学全国重点实验室 天津 300071
  • 投稿日期:2025-05-30 发布日期:2025-08-12
  • 通讯作者: 王小野
  • 作者简介:

    高蓉蓉, 南开大学化学学院2022级在读博士生, 目前研究方向为有机光电探测器.

    吕昊汉, 南开大学化学学院2023级在读硕士生. 2023年获得南开大学材料化学学士学位, 目前研究方向为有机光电材料与器件.

    王小野, 现为南开大学化学学院及元素有机化学全国重点实验室特聘研究员, 独立课题组组长, 国家级青年人才, 2023年获得中国化学会青年化学奖、中国化学会菁青化学新锐奖、首届中国化学会朱道本有机固体青年创新奖及天津市青科协优秀青年科技工作者称号, 入选Sci. China Chem.及J. Mater. Chem. C新锐科学家. 近年围绕硼杂稠环共轭体系的精准构筑与光电功能应用开展研究工作, 已发表论文100余篇, 被引用7800余次.

    “中国青年化学家”专辑.

  • 基金资助:
    国家自然科学基金(22375106); 国家自然科学基金(92256304)

Organic Photodetectors Based on Narrowband Absorption Materials

Rong-Rong Gao, Hao-Han Lv, Xiao-Ye Wang*()   

  1. State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
  • Received:2025-05-30 Published:2025-08-12
  • Contact: Xiao-Ye Wang
  • About author:

    For the VSI “Rising Stars in Chemistry”.

  • Supported by:
    National Natural Science Foundation of China(22375106); National Natural Science Foundation of China(92256304)

窄谱带有机光电探测器因其高光谱分辨率和广阔应用前景成为光电子领域的研究热点. 传统依赖分光元件或器件工程策略的窄谱带光电探测器面临集成度低、成本高昂等问题. 有机光电材料通过分子结构设计可实现光谱响应的精确调控, 在构筑窄谱带光电探测器中展现出巨大潜力. 本工作聚焦于窄谱吸收材料的有机光电探测器, 从分子设计和聚集态调控两个角度剖析不同材料体系窄谱吸收机制, 并探讨其在探测器中的应用, 最后对该领域未来发展的机遇和挑战进行展望.

关键词: 窄谱带, 光电探测器, 有机光电材料, 多重共振, J-聚集

Organic narrowband photodetectors (NBPDs) have garnered substantial research attention within optoelectronic technology due to their superior spectral resolution and significant potential for applications in biomedical sensing, machine vision, and hyperspectral imaging. Conventional approaches to achieve spectral selectivity, which rely heavily on discrete optical filters or intricate device engineering strategies (e.g., charge collection narrowing, charge injection narrowing and exciton dissociation narrowing), suffer from inherent limitations including compromised device integration density, increased fabrication complexity, and elevated costs. The absorption spectra of organic optoelectronic materials can be accurately regulated through rational design of molecular structures, which exhibits great superiority in constructing narrowband photodetectors. This perspective reviews organic NBPDs based on narrowband absorption materials, analyzing strategies from both molecular design and aggregation-state modulation perspectives. Molecular design covered include metal phthalocyanines, cyanine dyes, merocyanine dyes, squaraine dyes, donor-acceptor (D-A) systems, multi-resonance (MR) systems, non-charge- transfer (non-CT) systems, and boron-dipyrromethene (BODIPY) derivatives. While conventional dyes and D-A molecules typically achieve detection full width at half-maximum (FWHM) no less than 50 nm, emerging MR and non-CT systems demonstrate exceptional potential for sub-50 nm FWHM. This enhanced narrowness stems from their unique photophysical properties—MR systems feature suppressed vibrational coupling due to non-bonding molecular orbitals, while non-CT systems utilize localized excitons. Aggregation-state control, particularly J-aggregation, is highlighted as a powerful strategy to counteract spectral broadening in solid-state films. J-aggregates, formed by a specific slipped-stack molecular arrangements, exhibit red-shifted sharp absorption due to suppressed vibronic couplings. Despite considerable progress, significant challenges still exist in further compressing FWHM below 20 nm, achieving reliable control over aggregation processes during large-area fabrication, standardizing the reporting of crucial figures of merit like spectral rejection ratio (SRR) to enable fair cross-lab comparisons, and developing materials specifically optimized for key application wavelengths beyond the visible range. Addressing these hurdles demands a synergistic approach combining advanced molecular engineering, precise aggregation control, and innovations in device fabrications to realize the full potential of high-performance organic NBPDs for next-generation optoelectronic applications.

Key words: narrowband, photodetector, organic optoelectronic materials, multi-resonance, J-aggregate