化学学报 ›› 2025, Vol. 83 ›› Issue (8): 947-961.DOI: 10.6023/A25060228 上一篇    下一篇

综述

钠离子电池硫酸铁钠正极的关键问题及设计策略

张贤碧a, 项爽a, 唐有根a,*(), 孙旦a, 李欢欢b, 王海燕a,*()   

  1. a 中南大学化学化工学院 长沙 410083
    b 河南师范大学化学化工学院 新乡 453000
  • 投稿日期:2025-06-17 发布日期:2025-08-12
  • 通讯作者: 唐有根, 王海燕
  • 作者简介:

    张贤碧, 硕士研究生, 就读于中南大学化学化工学院. 研究方向为钠离子电池聚阴离子型正极材料的改性及储钠机制研究.

    唐有根, 中南大学化学化工学院二级教授、博士生导师, 湖南省电池行业协会会长, 中南大学化学电源与材料研究所所长, 化学电源湖南省重点实验室主任. 近年来主要从事先进电池、新能源材料和应用电化学等方面的教学、科研和开发工作. 先后荣获省部级科技进步奖12项, 获国家发明专利20项. 出版专著和教材5部, 在Nat. Commun., Angew. Chem. Int. Ed., Energy Environ. Sci.等国内外知名期刊发表科研论文300余篇.

    王海燕, 中南大学化学化工学院教授, 博士生导师, 国家级青年学者, 湖南省科技创新领军人才. 近年来一直从事新能源材料、电池器件及资源绿色循环研究. 目前以通讯作者在Nat. Commun., Angew. Chem. Int. Ed., Adv. Mater.等国际知名期刊发表论文180余篇, 论文已被他引1.7万余次, H指数为70. 获授权国家发明专利20余项. 获湖南省自然科学二等奖, 重庆市科技进步一等奖等.

    “中国青年化学家”专辑.

  • 基金资助:
    中国湖南省科技计划(2017TP1001)

Critical Challenges and Design Strategies of Sodium Iron Sulfate Cathode for Sodium-Ion Batteries

Xianbi Zhanga, Shuang Xianga, Yougen Tanga,*(), Dan Suna, Huanhuan Lib, Haiyan Wanga,*()   

  1. a School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
    b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
  • Received:2025-06-17 Published:2025-08-12
  • Contact: Yougen Tang, Haiyan Wang
  • About author:

    For the VSI “Rising Stars in Chemistry”.

  • Supported by:
    Hunan Provincial Science and Technology Plan Projects of China(2017TP1001)

钠离子电池具有资源丰富和低成本优势, 是锂离子电池的有益补充, 有广阔的应用前景. 正极材料是关系钠离子电池成本的关键, 因此开发低成本、高性能的正极材料对推动钠离子电池应用具有重要意义. 具有Alluaudite型三维框架的硫酸铁钠正极材料不仅结构稳定、能量密度高, 且其原料来源广泛、环境友好, 是一种有竞争力的低成本钠离子电池正极材料. 然而, 硫酸铁钠材料面临着本征电导率低、界面性质活泼以及合成过程中容易出现杂相等问题, 限制了其在大规模储能体系中的应用. 本综述从材料晶体结构、钠离子脱嵌机制出发, 总结了其合成方法以及所面临的关键问题, 并从非化学计量比设计、元素掺杂、碳层包覆等角度详细概述了其改性策略, 最后介绍了该材料的产业化进程. 本综述为进一步提升硫酸铁钠的电化学性能提供了设计策略, 有望推动其商业化应用进程.

关键词: 钠离子电池, 硫酸铁钠, 非化学计量比, 界面性质, 碳包覆

The ever-growing energy demand poses significant challenges for developing clean and sustainable energy solutions, making the establishment of low-cost, environmentally benign, and efficient energy storage systems a critical focus for societal development. Lithium ion batteries (LIBs), as a mature electrochemical energy storage technology, currently dominate the market and have achieved large-scale implementation in electric vehicles. However, the escalating application costs of LIBs, driven by lithium resource scarcity and geopolitical constraints, have intensified the search for alternatives. Sodium ion batteries (SIBs) emerge as a promising next-generation low-cost storage solution, benefiting from electrochemical energy storage mechanisms analogous to LIBs while leveraging sodium's natural abundance. As a pivotal component of SIBs, cathode materials not only dictate battery performance but also critically determine system-level costs. Current SIB cathode materials primarily fall into three categories: layered oxides, Prussian blue analogs, and polyanionic compounds. Among these, Na2Fe2(SO4)3 (NFS) demonstrates exceptional structural stability and rate capability. The strong inductive effect of SO2- 4 groups endows NFS with a high working voltage of 3.8 V, translating to superior energy density. Furthermore, NFS exhibits advantages in raw material accessibility and environmental compatibility, aligning with sustainable development principles and positioning it as an ideal candidate for commercial SIB cathodes. Nevertheless, practical deployment of NFS in large-scale energy storage systems faces fundamental challenges: (1) intrinsic low electronic conductivity limits charge transfer kinetics, (2) interfacial instability during prolonged cycling causes capacity degradation, and (3) difficulties in synthesizing phase-pure structures compromise electrochemical reproducibility. This review begins with an in-depth analysis of the crystal structure and sodium ion insertion/extraction mechanism of NFS materials, systematically summarizing their synthesis methodologies and existing challenges. Modification strategies from perspectives including non-stoichiometric design, elemental doping, and carbon coating engineering are further overviewed. The review then extends to industrial-scale production progress, addressing key technical bottlenecks in manufacturing. By integrating fundamental mechanisms with practical applications, this work aims to provide effective guidance for enhancing the electrochemical performance of NFS materials and accelerating their commercialization, ultimately contributing to the development of cost-effective and high-performance sodium-ion battery systems.

Key words: sodium ion battery, sodium iron sulfate, non-stoichiometric ratio, interfacial property, carbon coating