化学学报 ›› 2011, Vol. 69 ›› Issue (01): 65-70. 上一篇    下一篇

研究论文

甲醛电化学传感器多孔气体扩散电极不同催化层结构与响应性能研究

杨嘉伟1,方正*,2,潘义2,刘仁红2,王佳黎2,但德忠1   

  1. (1四川大学建筑与环境学院 成都 610065)
    (2中国测试技术研究院 成都 610021)
  • 投稿日期:2010-06-04 修回日期:2010-10-17 发布日期:2010-11-16
  • 通讯作者: 杨嘉伟 E-mail:jwyang626@tom.com
  • 基金资助:

    国家科技部社会公益课题“室内环境有害物质快速监测及计量标准研究”

Study on Effect of Microstructure of Porous Gas Diffusive Electrodes with Different Catalysts for Electrochemical Sensor on Performance of Response for Determination of Formaldehyde

Yang Jiawei1 Fang Zheng*,2 Pan Yi2 Liu Renhong2 Wang Jiali2 Dan Dezhong1   

  1. (1 College of Architecture and Environment, Sichuan University, Chengdu 610065)
    (2 National Institute of Measurement and Testing Technology, Chengdu 610021)
  • Received:2010-06-04 Revised:2010-10-17 Published:2010-11-16

多孔气体扩散电极的制备是制备甲醛电化学传感器的关键所在, 其中催化层的结构直接影响到传感器的响应性能. 通过柠檬酸三钠还原法合成了纳米金-活性炭、纳米金-碳纳米管催化剂, 制备了甲醛电化学传感器多孔气体扩散电极, 并对电极进行SEM(扫描电子显微镜)物理表征. 在甲醛气体浓度为0.24和0.63 mg/m3时, 电极C具有较好的响应, 在0.1到0.84 mg/m3浓度范围内, 线性方程为y=10.515x+4.4049 (R2=0.9917), 响应时间约80 s. 分析了不同催化剂的气体扩散电极结构与甲醛响应性的关系, 为研制开发性能优良的甲醛电化学传感器奠定了基础.

关键词: 纳米金, 活性炭, 碳纳米管, 甲醛, 多孔气体扩散电极, 电化学传感器

The preparation of porous gas diffusive electrodes is the key to an excellent electrochemical sensor for determination of formaldehyde, in which the microstructure of catalyst direct affects the response capability. The catalysts of gold nanoparticles/activated carbon and gold nanoparticles/carbon nanotubes were prepared by sodium citrate reduction method. The gas diffusion porous electrodes have been obtained and characterized by SEM (scanning electron microscopy). The formaldehyde gas sensor C had the best response when formaldehyde concentration was 0.24 and 0.63 mg/m3. The linear regress equation was y=10.515x+4.4049 (R2=0.9917) when concentration of formaldehyde ranged from 0.1 to 0.84 mg/m3, and the response time was about 80 s. The relationship between microstructure of the gas diffusion electrode and response characteristic of formaldehyde was studied.

Key words: gold nanoparticle, activated carbon, carbon nanotube, formaldehyde, porous gas diffusion electrode, electrochemical sensor